32 research outputs found

    A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing

    Full text link
    Motivated by an open problem from graph drawing, we study several partitioning problems for line and hyperplane arrangements. We prove a ham-sandwich cut theorem: given two sets of n lines in R^2, there is a line l such that in both line sets, for both halfplanes delimited by l, there are n^{1/2} lines which pairwise intersect in that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines there is a point such that for any halfplane containing that point there are (n/3)^{1/2} of the lines which pairwise intersect in that halfplane. We generalize those results in higher dimension and obtain a center transversal theorem, a same-type lemma, and a positive portion Erdos-Szekeres theorem for hyperplane arrangements. This is done by formulating a generalization of the center transversal theorem which applies to set functions that are much more general than measures. Back to Graph Drawing (and in the plane), we completely solve the open problem that motivated our search: there is no set of n labelled lines that are universal for all n-vertex labelled planar graphs. As a side note, we prove that every set of n (unlabelled) lines is universal for all n-vertex (unlabelled) planar graphs

    An upper bound on the k-modem illumination problem

    Full text link
    A variation on the classical polygon illumination problem was introduced in [Aichholzer et. al. EuroCG'09]. In this variant light sources are replaced by wireless devices called k-modems, which can penetrate a fixed number k, of "walls". A point in the interior of a polygon is "illuminated" by a k-modem if the line segment joining them intersects at most k edges of the polygon. It is easy to construct polygons of n vertices where the number of k-modems required to illuminate all interior points is Omega(n/k). However, no non-trivial upper bound is known. In this paper we prove that the number of k-modems required to illuminate any polygon of n vertices is at most O(n/k). For the cases of illuminating an orthogonal polygon or a set of disjoint orthogonal segments, we give a tighter bound of 6n/k + 1. Moreover, we present an O(n log n) time algorithm to achieve this bound.Comment: 9 pages, 4 figure
    corecore