66,219 research outputs found

    Hamming Approximation of NP Witnesses

    Get PDF
    Given a satisfiable 3-SAT formula, how hard is it to find an assignment to the variables that has Hamming distance at most n/2 to a satisfying assignment? More generally, consider any polynomial-time verifier for any NP-complete language. A d(n)-Hamming-approximation algorithm for the verifier is one that, given any member x of the language, outputs in polynomial time a string a with Hamming distance at most d(n) to some witness w, where (x,w) is accepted by the verifier. Previous results have shown that, if P != NP, then every NP-complete language has a verifier for which there is no (n/2-n^(2/3+d))-Hamming-approximation algorithm, for various constants d > 0. Our main result is that, if P != NP, then every paddable NP-complete language has a verifier that admits no (n/2+O(sqrt(n log n)))-Hamming-approximation algorithm. That is, one cannot get even half the bits right. We also consider natural verifiers for various well-known NP-complete problems. They do have n/2-Hamming-approximation algorithms, but, if P != NP, have no (n/2-n^epsilon)-Hamming-approximation algorithms for any constant epsilon > 0. We show similar results for randomized algorithms

    Metrical Service Systems with Multiple Servers

    Full text link
    We study the problem of metrical service systems with multiple servers (MSSMS), which generalizes two well-known problems -- the kk-server problem, and metrical service systems. The MSSMS problem is to service requests, each of which is an ll-point subset of a metric space, using kk servers, with the objective of minimizing the total distance traveled by the servers. Feuerstein initiated a study of this problem by proving upper and lower bounds on the deterministic competitive ratio for uniform metric spaces. We improve Feuerstein's analysis of the upper bound and prove that his algorithm achieves a competitive ratio of k((k+ll)βˆ’1)k({{k+l}\choose{l}}-1). In the randomized online setting, for uniform metric spaces, we give an algorithm which achieves a competitive ratio O(k3log⁑l)\mathcal{O}(k^3\log l), beating the deterministic lower bound of (k+ll)βˆ’1{{k+l}\choose{l}}-1. We prove that any randomized algorithm for MSSMS on uniform metric spaces must be Ξ©(log⁑kl)\Omega(\log kl)-competitive. We then prove an improved lower bound of (k+2lβˆ’1k)βˆ’(k+lβˆ’1k){{k+2l-1}\choose{k}}-{{k+l-1}\choose{k}} on the competitive ratio of any deterministic algorithm for (k,l)(k,l)-MSSMS, on general metric spaces. In the offline setting, we give a pseudo-approximation algorithm for (k,l)(k,l)-MSSMS on general metric spaces, which achieves an approximation ratio of ll using klkl servers. We also prove a matching hardness result, that a pseudo-approximation with less than klkl servers is unlikely, even for uniform metric spaces. For general metric spaces, we highlight the limitations of a few popular techniques, that have been used in algorithm design for the kk-server problem and metrical service systems.Comment: 18 pages; accepted for publication at COCOON 201

    Edit Distance for Pushdown Automata

    Get PDF
    The edit distance between two words w1,w2w_1, w_2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1w_1 to w2w_2. The edit distance generalizes to languages L1,L2\mathcal{L}_1, \mathcal{L}_2, where the edit distance from L1\mathcal{L}_1 to L2\mathcal{L}_2 is the minimal number kk such that for every word from L1\mathcal{L}_1 there exists a word in L2\mathcal{L}_2 with edit distance at most kk. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1)~deciding whether, for a given threshold kk, the edit distance from a pushdown automaton to a finite automaton is at most kk, and (2)~deciding whether the edit distance from a pushdown automaton to a finite automaton is finite.Comment: An extended version of a paper accepted to ICALP 2015 with the same title. The paper has been accepted to the LMCS journa
    • …
    corecore