3,046 research outputs found

    Ready Student One: Exploring the predictors of student learning in virtual reality

    Full text link
    Immersive virtual reality (VR) has enormous potential for education, but classroom resources are limited. Thus, it is important to identify whether and when VR provides sufficient advantages over other modes of learning to justify its deployment. In a between-subjects experiment, we compared three methods of teaching Moon phases (a hands-on activity, VR, and a desktop simulation) and measured student improvement on existing learning and attitudinal measures. While a substantial majority of students preferred the VR experience, we found no significant differences in learning between conditions. However, we found differences between conditions based on gender, which was highly correlated with experience with video games. These differences may indicate certain groups have an advantage in the VR setting.Comment: 28 pages, 7 figures, 4 tables. Published in PLOS ONE March 25, 202

    Immersive Planetarium Visualizations For Teaching Solar System Moon Concepts To Undergraduates

    Get PDF
    Digital video fulldome has long been heralded as a revolutionary educational technology; yet the discipline-based astronomy education research literature showing planetarium effectiveness has been sparse. In order to help understand to what extent immersion impacts learning and the effect of the “narrative journey” model of presentation, we conducted a pre- and post-test effectiveness study of lectures on moon systems in the Solar System presented to 781 college undergraduates under immersive and non-immersive treatment conditions. Although all students showed some learning gains immediately after instruction, those who saw presentations in an immersive fulldome planetarium showed the greatest retention, compared to control classes that witnessed the same lecture and visuals on a flat screen in their regular classroom, and students that saw no interactive visuals. Because the same instructors, presentation visuals, and instructional outline were used for both the classroom and dome instruction using the virtual environment, the results suggest that the large display and wide field-of-view, two elements unique to the dome, resulted in greater attention, and were primarily responsible for the greater gains

    Using A Digital Planetarium For Teaching Seasons To Undergraduates

    Get PDF
    Computer-generated simulations and visualizations in digital planetariums have the potential to bridge the comprehension gap in astronomy education. Concepts involving three-dimensional spatial relationships can be difficult for the layperson to understand, since much of the traditional teaching materials used in astronomy education remain two-dimensional in nature. We study the student performance after viewing visualizations in an immersive theater and in non-immersive classrooms for the topic of seasons in an introductory undergraduate astronomy course. Using weekly multiple-choice quizzes to gauge student learning, comparison of curriculum tests taken immediately after instruction and pre-instruction quizzes show a significant difference in the results of students who viewed visualizations in the planetarium versus their counterparts who viewed non-immersive content in their classrooms, and those in the control group that saw no visualizations whatsoever. These results suggest that the immersive visuals help by freeing up cognitive resources that can be devoted to learning, while visualizations shown in the classroom may be an intrinsically inferior experience for students

    The Effect of Augmented Reality Treatment on Learning, Cognitive Load, and Spatial Visualization Abilities

    Get PDF
    This study investigated the effects of Augmented Reality (AR) on learning, cognitive load and spatial abilities. More specifically, it measured learning gains, perceived cognitive load, and the role spatial abilities play with students engaged in an astronomy lesson about lunar phases. Research participants were 182 students from a public university in southeastern United States, and were recruited from psychology research pool. Participants were randomly assigned to two groups: (a) Augmented Reality and Text Astronomy Treatment (ARTAT); and (b) Images and Text Astronomy Treatment (ITAT). Upon entering the experimental classroom, participants were given (a) Paper Folding Test to measure their spatial abilities; (b) the Lunar Phases Concept Inventory (LPCI) pre-test; (c) lesson on Lunar Phases; (d) NASA-TLX to measure participants’ cognitive load; and (e) LPCI post-test. Statistical analysis found (a) no statistical difference for learning gains between the ARTAT and ITAT groups; (b) statistically significant difference for cognitive load; and (c) no significant difference for spatial abilities scores

    Exploring the Reasons for the Seasons Using Google Earth, 3D Models, and Plots

    Get PDF
    Public understanding of climate and climate change is of broad societal importance. However, misconceptions regarding reasons for the seasons abound amongst students, teachers, and the public, many of whom believe that seasonality is caused by large variations in Earth\u27s distance from the Sun. Misconceptions may be reinforced by textbook illustrations that exaggerate eccentricity or show an inclined view of Earth\u27s near-circular orbit. Textbook explanations that omit multiple factors influencing seasons, that do not mesh with students\u27 experiences, or that are erroneous, hinder scientifically valid reasoning. Studies show that many teachers share their students\u27 misconceptions, and even when they understand basic concepts, teachers may fail to appreciate the range of factors contributing to seasonal change, or their relative importance. We have therefore developed a learning resource using Google Earth, a virtual globe with other useful, weather- and climate-related visualizations. A classroom test of 27 undergraduates in a public research university showed that 15 improved their test scores after the Google Earth-based laboratory class, whereas 5 disimproved. Mean correct answers rose from 4.7/10 to 6/10, giving a paired t-test value of 0.21. After using Google Earth, students are helped to segue to a heliocentric view

    adVantage -- Seeing the Universe: How Virtual Reality can Further Augment a Three-Dimensional Model of a Star-Planet-Satellite System for Educational Gain in Undergraduate Astronomy Education

    Get PDF
    This thesis introduces the “adVantage – Seeing the Universe” system, a learning environment designed to augment introductory undergraduate astronomy education. The goal of the adVantage project is to show how an immersive virtual reality (VR) environment can be used effectively to model the relative sizes and distances between objects in space. To this end, adVantage leverages the benefits of three-dimensional models by letting users observe astronomical phenomena from multiple locations. The system uses pre-set vantage points to structure students’ progress through a “mission” designed to improve their understanding of scale. With this first mission, adVantage demonstrates the potential benefits of representing larger distances as multiples of smaller steps of a constant and observable size to convey relative distance in space, and of judging relative size by making observations at various vantage points a constant distance away from each other. Using an HTC Vive headset and hand-controllers, students exploring in adVantage will be able to observe the relative sizes and orbital movements of the subjects of the system: e.g., the exoplanet WASP-12b, its Sun-like star, WASP-12, and imagined satellites constructed to resemble the Earth and its Moon. In the first mission, users investigate the Earth’s average orbital radius around the Sun with the average orbital radius of WASP-12b around WASP-12 as a yardstick

    Exploring a Cognitive Basis for Learning Spatial Relationships with Augmented Reality

    Get PDF
    Augmented reality (AR) is an emergent class of interface that presents compelling possibilities for advancing spatial visualization. We offer a brief overview of AR technology and current research with in the educational realm. AR interfaces appear to provide a unique combination of visual display properties, modes of user manipulation, and interaction with spatial information. Drawing upon aspects of proprioception and sensorimotor function, we discuss how AR may have a unique and powerful link to spatial knowledge acquisition through visuo-motor involvement in the processing of information. We identify key properties of AR interfaces and how they differ from conventional visualization interfaces, followed by a discussion of theoretical perspectives that make a case for learning spatial relationships using first person manipulative AR.Recent research provides evidence that this form of AR holds cognitive advantages for learning when compared with traditional desktop 2D interfaces. We review the visual-physical connections to learning using first person manipulative AR within educational contexts. We then provide some suggestions for building future research in this area and explore its significance in the realm of spatial knowledge acquisition
    corecore