74,761 research outputs found

    A proposed DAQ system for a calorimeter at the International Linear Collider

    Get PDF
    This note describes R&D to be carried out on the data acquisition system for a calorimeter at the future International Linear Collider. A generic calorimeter and data acquisition system is described. Within this framework modified designs and potential bottlenecks within the current system are described. Solutions leading up to a technical design report will to be carried out within CALICE-UK groups.Comment: 13 pages, 4 figure

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Optimized Surface Code Communication in Superconducting Quantum Computers

    Full text link
    Quantum computing (QC) is at the cusp of a revolution. Machines with 100 quantum bits (qubits) are anticipated to be operational by 2020 [googlemachine,gambetta2015building], and several-hundred-qubit machines are around the corner. Machines of this scale have the capacity to demonstrate quantum supremacy, the tipping point where QC is faster than the fastest classical alternative for a particular problem. Because error correction techniques will be central to QC and will be the most expensive component of quantum computation, choosing the lowest-overhead error correction scheme is critical to overall QC success. This paper evaluates two established quantum error correction codes---planar and double-defect surface codes---using a set of compilation, scheduling and network simulation tools. In considering scalable methods for optimizing both codes, we do so in the context of a full microarchitectural and compiler analysis. Contrary to previous predictions, we find that the simpler planar codes are sometimes more favorable for implementation on superconducting quantum computers, especially under conditions of high communication congestion.Comment: 14 pages, 9 figures, The 50th Annual IEEE/ACM International Symposium on Microarchitectur

    On the Computation of EXIT Characteristics for Symbol-Based Iterative Decoding

    No full text
    In this paper we propose an efficient method for computing index-based extrinsic information transfer (EXIT) charts, which are useful for estimating the convergence properties of non-binary iterative decoding. A standard method is to apply <i>a priori</i> reliability information to the <i>a posteriori</i> probability (APP) constituent decoder and compute the resulting average extrinsic information at the decoder output via multidimensional histogram measurements. However, this technique is only reasonable for very small index lengths as the complexity of this approach grows exponentially with the index length. We show that by averaging over a function of the extrinsic APPs for a long block the extrinsic information can be estimated with very low complexity. In contrast to using histogram measurements this method allows to generate EXIT charts even for larger index alphabets. Examples for a non-binary serial concatenated code and for turbo trellis-coded modulation, resp., demonstrate the capabilities of the proposed approach
    • …
    corecore