866 research outputs found

    A Dependency Graph Isomorphism for News Sentence Searching

    Get PDF
    Abstract. Given that the amount of news being published is only increasing, an effective search tool is invaluable to many Web-based companies. With word-based approaches ignoring much of the information in texts, we propose Destiny, a linguistic approach that leverages the syntactic information in sentences by representing sentences as graphs with disambiguated words as nodes and grammatical relations as edges. Destiny performs approximate sub-graph isomorphism on the query graph and the news sentence graphs, exploiting word synonymy as well as hypernymy. Employing a custom corpus of user-rated queries and sentences, the algorithm is evaluated using the normalized Discounted Cumulative Gain, Spearman's Rho, and Mean Average Precision and it is shown that Destiny performs significantly better than a TF-IDF baseline on the considered measures and corpus

    Using linguistic graph similarity to search for sentences in news articles

    Get PDF
    With the volume of daily news growing to sizes too big to handle for any individual human, there is a clear need for effective search algorithms. Since traditional bag-of-words approaches are inherently limited since they ignore much of the information that is embedded in the structure of the text, we propose a linguistic approach to search called Destiny in this paper. With Destiny, sentences, both from news items and the user queries, are represented as graphs where the nodes represent the words in the sentence and the edges represent the grammatical relations between the words. The proposed algorithm is evaluated against a TF-IDF baseline using a custom corpus of user-rated sentences. Destiny significantly outperforms TF-IDF in terms of Mean Average Precision, normalized Discounted Cumulative Gain, and Spearman's Rho

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Revisiting the Context Window for Cross-lingual Word Embeddings

    Full text link
    Existing approaches to mapping-based cross-lingual word embeddings are based on the assumption that the source and target embedding spaces are structurally similar. The structures of embedding spaces largely depend on the co-occurrence statistics of each word, which the choice of context window determines. Despite this obvious connection between the context window and mapping-based cross-lingual embeddings, their relationship has been underexplored in prior work. In this work, we provide a thorough evaluation, in various languages, domains, and tasks, of bilingual embeddings trained with different context windows. The highlight of our findings is that increasing the size of both the source and target window sizes improves the performance of bilingual lexicon induction, especially the performance on frequent nouns.Comment: ACL202

    Acta Cybernetica : Volume 17. Number 3.

    Get PDF

    Web Service Retrieval by Structured Models

    Get PDF
    Much of the information available on theWorldWideWeb cannot effectively be found by the help of search engines because the information is dynamically generated on a user’s request.This applies to online decision support services as well as Deep Web information. We present in this paper a retrieval system that uses a variant of structured modeling to describe such information services, and similarity of models for retrieval. The computational complexity of the similarity problem is discussed, and graph algorithms for retrieval on repositories of service descriptions are introduced. We show how bounds for combinatorial optimization problems can provide filter algorithms in a retrieval context. We report about an evaluation of the retrieval system in a classroom experiment and give computational results on a benchmark library.Economics ;

    Metrics of Graph-Based Meaning Representations with Applications from Parsing Evaluation to Explainable NLG Evaluation and Semantic Search

    Get PDF
    "Who does what to whom?" The goal of a graph-based meaning representation (in short: MR) is to represent the meaning of a text in a structured format. With an MR, we can explicate the meaning of a text, describe occurring events and entities, and their semantic relations. Thus, a metric of MRs would measure a distance (or similarity) between MRs. We believe that such a meaning-focused similarity measurement can be useful for several important AI tasks, for instance, testing the capability of systems to produce meaningful output (system evaluation), or when searching for similar texts (information retrieval). Moreover, due to the natural explicitness of MRs, we hypothesize that MR metrics could provide us with valuable explainability of their similarity measurement. Indeed, if texts reside in a space where their meaning has been isolated and structured, we might directly see in which aspects two texts are actually similar (or dissimilar). However, we find that there is not much previous work on MR metrics, and thus we lack fundamental knowledge about them and their potential applications. Therefore, we make first steps to explore MR metrics and MR spaces, focusing on two key goals: 1. Develop novel and generally applicable methods for conducting similarity measurements in the space of MRs; 2. Explore potential applications that can profit from similarity assessments in MR spaces, including, but (by far) not limited to, their "classic" purpose of evaluating the quality of a text-to-MR system against a reference (aka parsing evaluation). We start by analyzing contributions from previous works that have proposed MR metrics for parsing evaluation. Then, we move beyond this restricted setup and start to develop novel and more general MR metrics based on i) insights from our analysis of the previous parsing evaluation metrics and ii) our motivation to extend MR metrics to similarity assessment of natural language texts. To empirically evaluate and assess our generalized MR metrics, and to open the door for future improvements, we propose the first benchmark of MR metrics. With our benchmark, we can study MR metrics through the lens of multiple metric-objectives such as sentence similarity and robustness. Then, we investigate novel applications of MR metrics. First, we explore new ways of applying MR metrics to evaluate systems that produce i) text from MRs (MR-to-text evaluation) and ii) MRs from text (MR parsing). We call our new setting MR projection-based, since we presume that one MR (at least) is unobserved and needs to be approximated. An advantage of such projection-based MR metric methods is that we can ablate a costly human reference. Notably, when visiting the MR-to-text scenario, we touch on a much broader application scenario for MR metrics: explainable MR-grounded evaluation of text generation systems. Moving steadily towards the application of MR metrics to general text similarity, we study MR metrics for measuring the meaning similarity of natural language arguments, which is an important task in argument mining, a new and surging area of natural language processing (NLP). In particular, we show that MRs and MR metrics can support an explainable and unsupervised argument similarity analysis and inform us about the quality of argumentative conclusions. Ultimately, we seek even more generality and are also interested in practical aspects such as efficiency. To this aim, we distill our insights from our hitherto explorations into MR metric spaces into an explainable state-of-the-art machine learning model for semantic search, a task for which we would like to achieve high accuracy and great efficiency. To this aim, we develop a controllable metric distillation approach that can explain how the similarity decisions in the neural text embedding space are modulated through interpretable features, while maintaining all efficiency and accuracy (sometimes improving it) of a high-performance neural semantic search method. This is an important contribution, since it shows i) that we can alleviate the efficiency bottleneck of computationally costly MR graph metrics and, vice versa, ii) that MR metrics can help mitigate a crucial limitation of large "black box" neural methods by eliciting explanations for decisions

    Network Analysis with Stochastic Grammars

    Get PDF
    Digital forensics requires significant manual effort to identify items of evidentiary interest from the ever-increasing volume of data in modern computing systems. One of the tasks digital forensic examiners conduct is mentally extracting and constructing insights from unstructured sequences of events. This research assists examiners with the association and individualization analysis processes that make up this task with the development of a Stochastic Context -Free Grammars (SCFG) knowledge representation for digital forensics analysis of computer network traffic. SCFG is leveraged to provide context to the low-level data collected as evidence and to build behavior profiles. Upon discovering patterns, the analyst can begin the association or individualization process to answer criminal investigative questions. Three contributions resulted from this research. First , domain characteristics suitable for SCFG representation were identified and a step -by- step approach to adapt SCFG to novel domains was developed. Second, a novel iterative graph-based method of identifying similarities in context-free grammars was developed to compare behavior patterns represented as grammars. Finally, the SCFG capabilities were demonstrated in performing association and individualization in reducing the suspect pool and reducing the volume of evidence to examine in a computer network traffic analysis use case

    Acta Cybernetica : Volume 19. Number 4.

    Get PDF
    • …
    corecore