
Using Linguistic Graph Similarity to
Search for Sentences in News Articles

Kim SCHOUTEN 1 and Flavius FRASINCAR
Erasmus University Rotterdam, the Netherlands

Abstract. With the volume of daily news growing to sizes too big to handle for any
individual human, there is a clear need for effective search algorithms. Since tra-
ditional bag-of-words approaches are inherently limited since they ignore much of
the information that is embedded in the structure of the text, we propose a linguistic
approach to search called Destiny in this paper. With Destiny, sentences, both from
news items and the user queries, are represented as graphs where the nodes repre-
sent the words in the sentence and the edges represent the grammatical relations
between the words. The proposed algorithm is evaluated against a TF-IDF baseline
using a custom corpus of user-rated sentences. Destiny significantly outperforms
TF-IDF in terms of Mean Average Precision, normalized Discounted Cumulative
Gain, and Spearman’s Rho.

Keywords. text searching, syntax dependencies, sub-graph isomorphism

1. Introduction

Nowadays, a significant portion of our mental capacity is devoted to the gathering, filter-
ing, and consumption of information. With many things that are considered to be news-
worthy, like updates from friends, twitter messages from people we follow, news mes-
sages on websites, and the more classical form of news like articles and news items, the
amount of textual data (not to mention multimedia content) has become too large too
handle. Even when considering only news items like articles, the number is overwhelm-
ing. And while some people can safely ignore lots of the news items, others are obliged
to keep up with all the relevant news, for example because of their job.

While smart heuristics like skimming and scanning texts is of great benefit, it can
only go so far. People, like investment portfolio managers, who have to monitor the
stock of a certain group of companies, have to keep track of all news concerning these
companies, including industry-wide news, but also that of competitors, suppliers, and
customers. Therefore, being able to intelligently search news on the Web, for example to
rank or filter news items, is paramount. Although text searching is very old, especially
in computer science terms, the advance of new paradigms like the Semantic Web, has
opened the way for new ways of searching.

This paper addresses one of these new search techniques, namely the search for
news sentences. Searching for specific sentences enables the user to both search across

1Corresponding Author: Kim Schouten, Erasmus University Rotterdam, PO Box 1738, NL-3000 DR,
Rotterdam, the Netherlands; E-mail: schouten@ese.eur.nl.

Databases and Information Systems IX
G. Arnicans et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-714-6-255

255

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/189917254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and within documents, with the algorithm pointing the user to exactly the sentences that
matches his or her query. With a previous publication [1] outlining the general concept
of such a method and [2] detailing its inner workings, this paper aims to provide a more
detailed evaluation and results discussion.

2. Related Work

The over two decades worth of Web research has yielded several approaches to Web news
searching. The most widely used approach is based on computing similarity by means
of vector distances (e.g., cosine similarity). All documents are represented as a vector of
word occurrences, with the latter recording either whether that word is in the document
or not, or the actual number of times the word occurs in the document. Often only the
stemmed words are used in these vector representations. The main characteristic of these
methods is their bag-of-words character, with words being completely stripped of their
context. However, that simplicity also allows for efficient and fast implementations, a
useful trait when trying to provide a good Web experience. In spite of its simplicity, it
has shown to perform well in many scenarios, for example in news personalization [3],
but also in news recommendation [4]. Being the de facto default in text searching, TF-
IDF [5], arguably the most well-known algorithm in this category, has been chosen to
serve as the baseline for the evaluation of the proposed algorithm.

With the advance of the Semantic Web, a move towards a more semantic way of
searching has been made. This includes the use of natural language processing to extract
more information from text and storing the results in a formally defined knowledge base
like an ontology. An example of such a setup can be found in the Hermes News Portal [6,
7], where news items are annotated using an ontology that links lexical representations to
concepts and instances. After processing the news items in this way, querying for news
becomes a simple matter of selecting the ontology concepts of interest and all news items
being annotated with these concepts are returned. Comparable to this is Aqualog [8], a
question answering application which is similar in setup as Hermes, and SemNews [9],
a news platform like Hermes using its own knowledge representation.

Unfortunately, because searching is performed in the ontology instead of the actual
text, only concepts that are defined in the ontology and correctly found in the text can be
returned to the user. A deeper problem however is caused by the fact that ontologies are
formally specified, meaning that all information in the text first has to be translated to
the logical language of the ontology. While translation always makes for a lossy trans-
formation, in this case it is worse as the target language is known to be insufficient to
represent certain natural language sentences. Barwise and Cooper [10] proved that first-
order logic is inadequate for some types of sentences, and most ontologies are based on
propositional or description logics which have even less expressive power.

3. Problem Definition

Using the linguistic principles [11] of homophonic meaning specification and composi-
tionality, a natural way of representing text is a graph of interconnected disambiguated
words, with the edges representing the grammatical relations between words. While

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences256



this representation is not as rich in semantics as an ontology, it avoids the problems of
ontology-based approaches while at the same time providing more semantics than tradi-
tional word-based approaches.

With both the news items and the query represented by graphs, the problem of
searching for the query now becomes related to graph isomorphism: the algorithm needs
to rank all sentence graphs in the news database according to similarity (i.e., the mea-
sure of isomorphism) with the graph that describes the user query. Since we need a mea-
sure of isomorphism instead of exact graph isomorphism, we cannot simply implement
Ullmann’s algorithm [12].

This approximate graph isomorphism has a much larger search space than regular
graph isomorphism which already is an NP-complete problem [13]. There are however
some constraints that make the problem more tractable. Because all graphs are both la-
beled and directed, they can be referred to as attributed relational graphs, which are eas-
ier to deal with in this regard than unlabeled or undirected graphs. Furthermore, missing
edges in the query graphs are allowed to be present in the news item graph (i.e., this is
related to induced graph isomorphism), a characteristic which also makes the problem
easier to solve since now the algorithm only has to check for the query’s edges in the
news sentence graph and not the other way around.

We have chosen to use an augmented version of the backtracking algorithm de-
scribed in [14] to compute the graph similarities. The original algorithm iterates through
the graph, checking with each step whether adding that node or edge to the partial so-
lution can still yield a valid final solution. Because of this check, partial solutions that
are known to be incorrect can be pruned, thus limiting the search space. Because parse
graphs are labeled graphs, nodes can only be matched to nodes when their labels are
identical, again limiting the search space. However, this will not work when considering
measures of similarity or approximate matches. Then, its backtracking behavior is essen-
tially lost as adding a node never renders a solution invalid, only less relevant. Because
of this we can only speak of a recursive algorithm in the case of approximate matching.
Such a recursive algorithm would assign similarity scores to all nodes and edges in the
solution graph, and the sum of all these similarity scores would be the final score for this
solution.

4. The Destiny Framework

The Destiny framework is the implementation that follows from the above discussion.
It has two main tasks: first, it transforms raw text into a graph, and second, it ranks
all graphs in a database based on similarity with a given user graph. In the current use
case, news items are transformed into graphs and stored in a database. The user graph
represents the user query which is executed on the database.

4.1. News Processing

A natural language processing pipeline has been developed that transforms raw text into
a grammatical dependencies-based graph representation. The pipeline consists of a set
of components with a specific natural language processing task that are consecutively
ordered, each processing the result of the previous component, sending the outcome as

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences 257



input to the next component in the pipeline. The same pipeline is used to process both
news items and user queries. An overview of the pipeline design is given in Figure 1. The
top half denotes the process of news transformation, whereas the bottom half denotes the
process of searching the news.

Figure 1. Conceptual representation of framework [2]

The pipeline is constructed on top of the GATE framework [15]. The same frame-
work comes packaged with an extensive set of components, hence three out of the seven
components are simply standard GATE components: the tokenizer to determine word
boundaries, the sentence splitter to determine sentence boundaries, and the morphologi-
cal analyzer to lemmatize words. While a default GATE component exists for the Stan-
ford Parser [16], a slightly modified version is used to take advantage of a newer version
of the parser itself. Porter’s stemming algorithm [17] is used to determine the stem of
each word.

The parser can be considered the main component of the pipeline, since it is respon-
sible for finding the grammatical dependencies, thus directly influencing the graph out-
put. Furthermore, it provides Part-of-Speech (POS) tags, essential information regarding
the grammatical type of words (e.g., noun, verb, adjective, etc.). Based on the informa-
tion extracted thus far, the graph builder component can construct a graph representation
for all sentences. First, a node is generated for each word, encoding all known informa-
tion about that word, like its POS, lemma, etc., in the node. Then, each syntactical depen-
dency between words is used to generate an edge between the corresponding nodes, with
the type of syntactical dependency encoded as an edge label. Even though a word can
appear more than once in a sentence, each instantiation of that word has its own unique
grammatical role in the sentence. As such it has its own dependencies, and is therefore
represented as a unique node in the resulting graph as well.

An example of a graph dependencies representation of a sentence is shown in Fig-
ure 2. As can be seen, some words are integrated into an edge label, in particular prepo-
sitions and conjunctions do not receive their own node. Integrating them in an edge label
gives a tighter and cleaner graph representation.

The last step of this process is the disambiguation of words, where the correct sense
of a word is determined and encoded in the corresponding node. Having the word senses
allows the search process to compare words, not only lexically, which would not be very
accurate in a number of situations, but also semantically. Even better, the search algo-
rithm can effectively use this information to find relations of synonymy and hypernymy
between words, something that would not be possible otherwise. Because the develop-

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences258



top
adjective

“In Gartner’s rankings, Hewlett-Packard is the top PC maker.”

the
determiner

PC
noun

maker
noun
(maker)
(make)

is
verb
(be)
(be)

Hewlett-
Packard

proper noun

rankings
noun – plural
(ranking)
(rank)

Gartner
proper noun

word
part-of-speech
(lemma)
(stem)

copula nominal
subject

prepositional
modifier “in”

possession
modifieradjectival

modifier

adjectival
modifier

noun compound
modifier

legend:

Figure 2. Graph representation of the example sentence [2]

ment of a word sense disambiguation algorithm is outside the scope of this paper, an
existing, widely used, algorithm is implemented: the simplified Lesk algorithm [18].

4.2. News Searching

The news search algorithm is essentially a ranking algorithm, where all sentences in the
database are ranked according to their similarity to the user query graph. As such, its
core element is the part where the similarity between a sentence in the database and the
user query is determined. This is the graph comparison, for which we decided to use a
recursive algorithm.

However, an initial hurdle is the problem of finding a suitable starting point from
where the graph comparison can commence. Since the structure of sentences can vary
greatly, it would not suffice to simply start comparing at the root of both sentence graphs.
On the other hand, comparing each node with every other node would be too compu-
tationally expensive. As a compromise, each noun and verb is indexed by stem and are
used as starting location for the graph comparison, the intuition being that nouns and
verbs are the most semantically rich words in a sentence. In practice, this means that for
each noun and verb in the query sentence, an index lookup is performed, returning a list
of nodes that would be suitable to start searching from for that node in the query graph.
The recursive graph comparison algorithm is then executed for each of those nodes, how-
ever, each pair of (query sentence, news sentence) is associated with (and thus ranked
according to) only the highest score over all runs. Suboptimal scores are discarded.

Destiny compares two graphs by first comparing the two starting nodes in the query
graph and a news sentence graph. Then, using the edges of both nodes, the most suitable
set of two nodes is determined to continue the graph comparison. This is done by looking
one node ahead: the algorithm compares each connected node of the ‘query node’ with
each connected node of the ‘news node’ to find the best possible pair. By means of a
threshold, any remaining pairs with a preliminary score that is below the threshold are
discarded. An additional effect of this policy is that when the preliminary score of a node
is too low to be visited, its children will be discarded as well. While discarding regions
of the graph that are likely to be irrelevant saves time, errors can also be introduced.
As such, this is a design choice that trades off a possible increase in accuracy against a
decrease in running time. The recursive process will continue until either all nodes have

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences 259



been visited or no suitable matching pair is available for the remaining unvisited nodes
that are connected to at least one visited node.

The similarity score of a news sentence with respect to the query sentence is es-
sentially the sum of similarity scores of all selected pairs of nodes and pairs of edges.
Thus, the actual score is determined by the similarity function of two nodes and the cor-
responding one for edges. While edges only have one feature, nodes have many aspects
that can be compared and proper weighting of all these features can substantially im-
prove results. As such, all feature weights are optimized using a genetic algorithm, which
was described in our previous paper [1].

Nodes are compared using a stepwise comparison. First, a set of five basic features is
used: stem, lemma, the full word (i.e., including affixes and suffixes), basic POS category,
and detailed POS category. The basic POS category describes the grammatical word
category (i.e., noun, verb, adjective, etc.), while the detailed POS category gives more
information about inflections like verb tenses and nouns being singular or plural. For
each feature, its weight is added to the score, if and only if the values for both nodes are
identical.

If the basic POS category is the same, but the lemma’s are not, there is the possi-
bility for synonymy or hypernymy. Using the acquired word senses and WordNet [19],
both nodes are first checked for synonymy and if so, the synonymy weight is added to
the similarity score for this pair of nodes. If there is no synonymy, the hypernym tree
of WordNet is used to find any hypernym relation between the two nodes. When such a
relation is found, the weight for hypernymy, divided by the number of steps in the hyper-
nym tree between the two nodes is added to the similarity score. In this way, very generic
generalizations will not get a high score (e.g., while ‘car’ has a hypernym ‘entity’, this is
so general it does not contribute much).

The last step in computing the similarity score of a node, is the adjustment with a
significance factor based on the number of occurrences of the stem of that node in the
full set of news items. For words which appear only once in the whole collection of news
items, the significance value will be one, while the word that appears most often in the
collection a significance value of zero will be assigned. Preliminary results showed that
adding this significance factor, reminiscent of the inverse document frequency in TF-
IDF, has a positive effect on the the obtained results. Equation 1 shows the formula used
to compute the significance value for a sentence node.

signi f icancen =
log(max#stem)− log(#stemn)

log(max#stem)
(1)

where
n = a sentence node,

#stemn = how often stemn was found in news,
max#stem = the highest #stem found for any n.

4.2.1. Complexity Analysis

As with any action that would require a user to wait for the results to be returned, the
speed of the search algorithm is important. The query execution speed is dependent on
the size of the data set, as well as on the size of the query. Furthermore, the higher the

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences260



similarity between the query and the data set, the more time it will take for the algorithm
to determine how similar these two are, as the recursion will stop when encountering too
much dissimilarity between the query and the current news item, as defined in the thresh-
old parameter. To give some insight into the scalability of the algorithm with respect to
the size of the data set and the size of the query, the complexity of the algorithm (in the
worst case scenario) is represented in the big-O notation:

f(n,o, p,q,r) = O(no2 pqr) (2)

where
n = the # of documents in the database,
o = the # of nodes in the query,
p = the average # of nodes in the documents in

the database,
q = the # of edges in the query, and
r = the average # of edges in the documents

in the database.
This can be further simplified by assuming that the number of nodes and edges in the
query is equal to the average number of nodes and edges in the documents in the database,
respectively. Furthermore, the average number of nodes and the average number of edges
does not diverge too much, so they too can be assumed equal. In that case, the formula
simplifies to two terms, as shown in Eq. 3: the number of documents in the database n
and the average size of a document p.

f(n, p) = O(np5) (3)

Interestingly, when scaling this up, the p5 will quickly be dwarfed by n, since the
size of the documents remains relatively constant, when just the number of documents
increase. We can therefore conclude that the algorithm is linear in the number of docu-
ments in the database.

5. Evaluation

In this section, the performance of the Destiny algorithm will be measured and compared
with the TF-IDF baseline. First, some insight is given into the used data set. Then the
performance in terms of quality, including a discussion on the used metrics, and process-
ing speed are given. Last, a section with advantages of using Destiny is included, as well
as a failure analysis based on our experiments.

5.1. Setup

Since Destiny searches on a sentence level (i.e., not only among documents but also
within documents), a corpus of sentences is needed where each sentence is rated against
the set of query sentences. From 19 Web news items, the sentences were extracted and
rated for similarity against all query sentences. The news items yielded a total of 1019
sentences that together form the data set on which Destiny will be evaluated. From this

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences 261



set, ten sentences were rewritten to function as queries. The rewritten sentences still
convey roughly the same meaning, but are rephrased by changing word order and using
synonyms or hypernyms instead of some original words. Each sentence-query pair is
rated by at least three different persons on a scale of 0 (no fit) to 3 (complete fit), resulting
in a data set of over 30500 data points. For each sentence-query pair, the final user score
is the average of the user ratings. From these scores, a ranking is constructed for each
query of all sentences in the database. The inter-annotator agreement, computed as the
standard deviation in scores is presented in Table 1. The table clearly shows that the
cases where there is no fit at all are easiest to recognize. Only when a certain degree of
similarity is involved does the problem become harder for humans. And even then, the
more extreme cases are easier then the case of average fit where the score is between 1
and 2.

Table 1. Inter-annotator agreement.

set of scores constraint average standard deviation

none: all sets of scores 0.1721
0 < avg(seto f scores)<= 1 0.6623
1 < avg(seto f scores)<= 2 1.0543
2 < avg(seto f scores)<= 3 0.7769

As mentioned in the previous section, the weights are optimized using a genetic al-
gorithm. The results of this optimization step are shown in Table 2, indicating that op-
timizing the weights is indeed a useful step in the process. Obviously, the nDCG score
improves the most, since that is the optimization objective. However, the MAP also in-
creases significantly, and while Spearman’s Rho decreases, the decrease is not statisti-
cally significant.

Table 2. Improvement of mean scores when optimizing.

metric default optimized rel. improvement t-test p-value

MAP 0.6806 0.6850 0.65% 1.768∗10−8

nDCG 0.1805 0.2112 16.93% 1.0798∗10−11

Sp. Rho 0.2807 0.2766 -1.45% 0.018

In order to have a proper evaluation, the data set is split into a training set and a
test set. The split itself is made on the query level: the genetic algorithm is trained on
5 queries plus their (user-rated) results, and then tested on the remaining 5 queries. The
results of the algorithm on those 5 queries are compared against the golden standard. This
process is repeated 32 times, for 32 different splits of the data. All splits are balanced
for the number of relevant query results, as some queries yielded a substantial amount of
similar sentences, while others returned only a handful of good results.

5.2. Search Results Quality

The performance of Destiny is compared with a standard implementation of TF-IDF.
As TF-IDF does not require training, the training set is not used and its scores are thus
computed using the test set of each of the 32 splits only. The comparison is done based on

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences262



Table 3. Evaluation results

TF-IDF mean score Destiny mean score rel. improvement t-test p-value

nDCG 0.238 0.253 11.2% < 0.001
MAP 0.376 0.424 12.8% < 0.001
Sp. Rho 0.215 0.282 31.6% < 0.001

three metrics: the Mean Average Precision (MAP), Spearman’s Rho, and the normalized
Discounted Cumulative Gain (nDCG) [12]. This gives a better view on the performance
than when using only one metric, as each of these has its own peculiarities, as discussed
in [2].

First, the results for the 32 separate training/test splits are shown for each of the three
used metrics. The MAP scores are shown in Figure 3, the nDCG scores are presented in
Figure 4, and the Spearman Rho numbers are given in Figure 5.

�

���

���

���

���

���

��	

��


���

���

�

� � � 
 � �� �� �� �
 �� �� �� �� �
 �� ��

�
��

���
�	



��
��


�����
���
���

Figure 3. The MAP scores for Destiny and tf-idf on all splits.

To draw solid conclusions regarding the performance of the Destiny algorithm, it
is compared with the TF-IDF baseline on the ranking computed from the user scores.
The results, shown in Table 3, clearly show that Destiny significantly outperforms the
TF-IDF baseline on the Spearman’s Rho and nDCG ranking. The p-value is computed
for the paired one-sided t-test on the two sets of scores consisting of the 32 split scores
for both Destiny and TF-IDF, respectively. The reported scores are the average scores
over all 32 splits.

5.3. Processing Speed

As the system roughly consists of a news item processing step (i.e., processing raw text
into a graph representation) and a graph search step, we report execution speed for these

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences 263



�

����

���

����

���

����

���

� � � 
 � �� �� �� �
 �� �� �� �� �
 �� ��

��
��

���
�	



��
��


�����
���
���

Figure 4. The nDCG scores for Destiny and tf-idf on all splits

two functions separately. Both were measured on an Intel Core i5 computer running at
3.8 GHz with 8 Gb RAM. In order to assess the processing speed of transforming raw
text into graph representations, we let the system process a set of approximately one
hundred news items and we measured the processing time per news item. The results
of this experiment are reported in Figure 6. The linear pattern that can be recognized is
also shown in the graph. Estimations from that linear pattern point to a processing rate
of about 47 nodes per second, where the number of nodes act as a proxy for the size of
the news item as the number of nodes roughly corresponds to the number of words a
news item contains. Also visualized is the fact that most items are processed within 30
seconds, exceeding that amount of time only for the largest of news items (e.g., multi-
page articles), of which there are only 10 in the scatter plot.

Query execution time is measured for the ten queries in our data set and compared
with TF-IDF in Figure 7. The average time needed to search with Destiny is about 1570
milliseconds, while TF-IDF needs on average 800 millisecond to execute one query. As
such, TF-IDF is on average approximately twice as fast as Destiny. Looking at the query
execution times for Destiny, it is clearly visible how execution times vary with the size
of the query and with the number of possible results. When there are clearly no similar
sentences, the algorithm is fast, while if many sentence graphs need to be compared, it
is slower. This influence is articulated because of the relatively small size of the set of
news sentences.

5.4. Advantages

Due to its focus on grammatical structure and word sense disambiguation, Destiny has
some typical advantages compared to traditional search methods. The first is the focus
on sentences rather than separate words. When searching is based on word occurrence

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences264



�

����

���

����

���

����

���

� � � 
 � �� �� �� �
 �� �� �� �� �
 �� ��

��

�

	�
�
���
��

�

��
��


�����
���
���

Figure 5. The Spearman Rho’s for Destiny and tf-idf on all splits

in a document, the document can get a high score even though different words from the
query are not related at all but simply occur somewhere in that document. By focusing on
sentences, words from the query are at least within the same sentence, making it much
more likely that they are indeed semantically related.

Because grammatical relations are utilized when searching, users can actively use
that to search for very specific information. While many different news items can be
matched to the same bag-of-words, a group of words connected by a certain grammatical
structure is much more specified. As such, it is more likely that a user will find his target
when he can indeed specify his search goal by means of a sentence.

While grammar can be used to specify the query, the fact that the search algorithm
employs synonyms and hypernyms improves the number of hits. Using synonyms and
hypernyms, sentences can be found without explicit knowledge of the words in that sen-
tence. This is obviously a great benefit compared to traditional word-based search algo-
rithms which only take the literal word into account.

5.5. Failure Analysis

In order to analyze the errors made by Destiny and assess their origin, a failure analysis
has been performed. This yielded a list of situations the algorithm is not able to handle
well. These situations are summarized below.

With respect to dealing with named entities, Destiny is rather limited. Various ver-
sions of a name are for example not correctly identified as being the same, neither are
different names belonging to the same concept. For example, “Apple” is not recognized
to be the same as “Apple Inc.” or “Apple Computers Inc.”, nor is it matched properly
to the ticker “AAPL”. Another example of the same problem would be the mismatch of
the algorithm between “United States of America” and “U.S.A.” or just “USA”. Also,

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences 265



�

�����

�����

�����

�����

�����

	����


����

� ��� ���� ���� ���� ���� ���� ����

�	
��

�
��
��

���
�

�
��
��

�


��

�
��

��

���
�����
�����
���������
	�������
�

Figure 6. Scatter plot of processing speed for various news item sizes

co-reference resolution is missing, so pronouns are not matched to the entity they are
referring to. A graph-based approach like [11] seems particularly well suited for this
work.

Also problematic in terms of semantics are proverbs, irony, and basically all types
of expressions that are not to be taken literally. This caused some specific errors in the
evaluation as in the data set many equivalent expressions are used for “dying”: “to pass
away”, “to leave a void”, “his loss”, etc. While word synonyms can be dealt with, syn-
onymous expressions are not considered.

Another issue is related to the fact that the search algorithm, when comparing two
graphs, cannot cope well with graphs of varying size. Especially the removal or addition
of a node is something the algorithm is unable to detect. When comparing Destiny with
an algorithm based on graph edit distance [8], it can only detect substitution of nodes in
a certain grammatical structure. Additional or missing nodes can thus break the iterative
comparison, resulting in a significantly lower score than expected. For example, in the
sentence “Microsoft is expanding its online corporate offerings to include a full version
of Office”, it is Microsoft that is the one who will include the full version of Office, but
instead of Microsoft being the grammatical subject of “include”, it is the subject of “is
expanding”, which in turn is linked to “include”. When searching for “Microsoft includes
Office into its online corporate offering”, a full match will therefore not be possible.

6. Concluding Remarks

We have shown the feasibility of searching Web news in a linguistic fashion by develop-
ing Destiny, a framework that uses natural language processing to transform both query
and news items to a graph-based representation and then searches by computing the sim-

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences266



�

���

����

����

����

����

����

� � � � � 	 
 � � ��

 !

�
��
��
��
���


�
��
��

��


��

�
��

��

"�
	#

���
���
������

Figure 7. Some query execution speed measures for Destiny and TF-IDF

ilarity between the graph representing the user query and the graphs in the database. In
the graph representation, much of the original semantics are preserved in the grammat-
ical relations between the words, encoded in graph as edges. Furthermore, the search
engine can also utilize semantic information with respect to words because of the word
sense disambiguation component: words can be compared on a lexical level, but also on
a semantic level by checking whether two words are synonyms or hypernyms.

While Destiny is slower than the TF-IDF baseline because of all the natural language
processing, it is, nevertheless, better in terms of search results quality. For all three used
metrics (e.g., Mean Average Precision, Spearman’s Rho, and normalized Discounted
Gain), Destiny yielded a significantly higher score.

Based on the failure analysis in the previous section, it would be useful to improve
the accuracy of the search results by adding a module to match named entities with dif-
ferent spelling or using abbreviations. Also co-reference resolution might be beneficial,
as sentences later in a news item often use pronouns to refer to an entity previously in-
troduced, while a query, being only one sentence, usually features the name of the en-
tity. Last, as discussed in the previous section, some form of graph edit distance might
be implemented to mitigate the problem of important nodes not being present in both
graphs.

While not within range of real-time processing speed, the processing and query
execution times of the prototype provide an acceptable basis for further development.
Currently, the system is entirely single-threaded, so a multi-threaded or even distributed
computing system (e.g., processing news items in parallel) is expected to improve the
speed.

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences 267



Acknowledgment

The authors are partially supported by the Dutch national program COMMIT.

References

[1] K. Schouten and F. Frasincar. A linguistic graph-based approach for web news sentence searching. In
Proceedings of the 24th International Conference on Database and Expert Systems Applications (DEXA
2013), pages 57–64. Springer, 2013.

[2] K. Schouten and F. Frasincar. Web News Sentence Searching Using Linguistic Graph Similarity. In
Proceedings of the 12th International Baltic Conference on Databases and Information Systems (DB&IS
2016), pages 319–333. Springer, 2016.

[3] J. Ahn, P. Brusilovsky, J. Grady, D. He, and S. Y. Syn. Open User Profiles for Adaptive News Systems:
Help or Harm? In 16th International Conference on World Wide Web (WWW 2007), pages 11–20. ACM,
2007.

[4] D. Billsus and M. J. Pazzani. User Modeling for Adaptive News Access. User Modeling and User-
Adapted Interaction, 10(2-3):147–180, 2000.

[5] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
[6] F. Frasincar, J. Borsje, and L. Levering. A Semantic Web-Based Approach for Building Personalized

News Services. IJEBR, 5(3):35–53, 2009.
[7] K. Schouten, P. Ruijgrok, J. Borsje, F. Frasincar, L. Levering, and F. Hogenboom. A Semantic Web-

based Approach for Personalizing News. In ACM Symposium on Applied Computing (SAC 2010), pages
854–861. ACM, 2010.

[8] V. Lopez, V. Uren, E. Motta, and M. Pasin. AquaLog: An Ontology-driven Question Answering System
as an Interface to the Semantic Web. Journal of Web Semantics, 5(2):72–105, 2007.

[9] A. Java, T. Finin, and S. Nirenburg. SemNews: A Semantic News Framework. In The Twenty-First
National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial
Intelligence Conference (AAAI 2006), pages 1939–1940. AAAI Press, 2006.

[10] J. Barwise and R. Cooper. Generalized Quantifiers and Natural Language. Linguistics and Philosophy,
4:159–219, 1981.

[11] M. Devitt and R. Hanley, editors. The Blackwell Guide to the Philosophy of Language. Blackwell
Publishing, 2006.

[12] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, 23(1):31–42, 1976.
[13] Stephen A. Cook. The Complexity of Theorem-proving Procedures. In Proceedings of the third annual

ACM symposium on Theory of Computing, STOC ’71, pages 151–158. ACM, 1971.
[14] J. J. McGregor. Backtrack Search Algorithms and the Maximal Common Subgraph Problem. Software

Practice and Experience, 12(1):23–34, 1982.
[15] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani, I Roberts, G. Gorrell, A. Funk,

A. Roberts, D. Damljanovic, T. Heitz, M. A. Greenwood, H. Saggion, J. Petrak, Y Li, and W Peters.
Text Processing with GATE (Version 6). University of Sheffield Department of Computer Science, 2011.

[16] D. Klein and C.D. Manning. Accurate Unlexicalized Parsing. In 41st Meeting of the Association for
Computational Linguistics (ACL 2003), pages 423–430. ACL, 2003.

[17] M. F. Porter. An Algorithm for Suffix Stripping. In Readings in Information Retrieval, pages 313–316.
Morgan Kaufmann Publishers Inc., 1997.

[18] A. Kilgarriff and J. Rosenzweig. English SENSEVAL: Report and Results. In 2nd International Con-
ference on Language Resources and Evaluation (LREC 2000), pages 1239–1244. ELRA, 2000.

[19] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

K. Schouten and F. Frasincar / Using Linguistic Graph Similarity to Search for Sentences268


