5 research outputs found

    Improving Model-Based Software Synthesis: A Focus on Mathematical Structures

    Get PDF
    Computer hardware keeps increasing in complexity. Software design needs to keep up with this. The right models and abstractions empower developers to leverage the novelties of modern hardware. This thesis deals primarily with Models of Computation, as a basis for software design, in a family of methods called software synthesis. We focus on Kahn Process Networks and data๏ฌ‚ow applications as abstractions, both for programming and for deriving an e๏ฌƒcient execution on heterogeneous multicores. The latter we accomplish by exploring the design space of possible mappings of computation and data to hardware resources. Mapping algorithms are not at the center of this thesis, however. Instead, we examine the mathematical structure of the mapping space, leveraging its inherent symmetries or geometric properties to improve mapping methods in general. This thesis thoroughly explores the process of model-based design, aiming to go beyond the more established software synthesis on data๏ฌ‚ow applications. We starting with the problem of assessing these methods through benchmarking, and go on to formally examine the general goals of benchmarks. In this context, we also consider the role modern machine learning methods play in benchmarking. We explore different established semantics, stretching the limits of Kahn Process Networks. We also discuss novel models, like Reactors, which are designed to be a deterministic, adaptive model with time as a ๏ฌrst-class citizen. By investigating abstractions and transformations in the Ohua language for implicit data๏ฌ‚ow programming, we also focus on programmability. The focus of the thesis is in the models and methods, but we evaluate them in diverse use-cases, generally centered around Cyber-Physical Systems. These include the 5G telecommunication standard, automotive and signal processing domains. We even go beyond embedded systems and discuss use-cases in GPU programming and microservice-based architectures

    ๋งค๋‹ˆ์ฝ”์–ด ๊ฐ€์†๊ธฐ์˜ ๊ฒฐํ•จ์„ ๊ณ ๋ คํ•œ ํƒœ์Šคํฌ ๋งคํ•‘ ๋ฐ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ํ•˜์ˆœํšŒ.๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ํ•˜๋‚˜์˜ ์นฉ ์•ˆ์— ์ง‘์ ๋˜๋Š” ํ”„๋กœ์„ธ์„œ์˜ ๊ฐฏ์ˆ˜๊ฐ€ ์ ์  ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์‘์šฉ๋“ค์˜ ๋ณด๋‹ค ๋†’์€ ์—ฐ์‚ฐ ๋Šฅ๋ ฅ์— ๋Œ€ํ•œ ์š”๊ตฌ๋กœ ์ธํ•ด ๋งค๋‹ˆ์ฝ”์–ด ๊ฐ€์†๊ธฐ๋Š” ์‹œ์Šคํ…œ-์˜จ-์นฉ์—์„œ ์ค‘์š”ํ•œ ์—ฐ์‚ฐ ์žฅ์น˜๊ฐ€ ๋˜์—ˆ๋‹ค. ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๊ฐ€ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์š”์ธ์— ์˜ํ•ด ๋™์ ์œผ๋กœ ๋ณ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์‹œ์Šคํ…œ ์ˆ˜ํ–‰์ค‘์— ๊ทธ๋Ÿฌํ•œ ๊ฐ€์†๊ธฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋‹ค๋ฃจ๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ์‹œ์Šคํ…œ ์ˆ˜์ค€์—์„œ๋Š” ์‘์šฉ๋“ค์ด ์‚ฌ์šฉ์ž์˜ ์š”๊ตฌ์— ๋”ฐ๋ผ ์‹œ์ž‘ ๋˜๋Š” ์ข…๋ฃŒ๊ฐ€ ๋˜๊ณ , ์‘์šฉ ๋ ˆ๋ฒจ์—์„œ๋Š” ์‘์šฉ ์ž์ฒด์˜ ๋™์ž‘์ด ์ž…๋ ฅ ๋ฐ์ดํƒ€๋‚˜ ์ˆ˜ํ–‰๋ชจ๋“œ์— ๋”ฐ๋ผ ๋™์ ์œผ๋กœ ๋ณ€ํ•˜๊ฒŒ ๋œ๋‹ค. ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์—์„œ๋Š” ํ”„๋กœ์„ธ์„œ์˜ ์˜๊ตฌ ๊ณ ์žฅ์œผ๋กœ ์ธํ•ด ํ•˜๋“œ์›จ์–ด ์ปดํฌ๋„ŒํŠธ์˜ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ƒํ™ฉ์ด ๋ณ€ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์†๊ธฐ๋ฅผ ๋‹ค๋ฃจ๋Š”๋ฐ ์žˆ์–ด์„œ์˜ ์œ„์™€ ๊ฐ™์€ ์–ด๋ ค์›€๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ธ๊ฐ€์ง€ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ๊ธฐ๋ฒ•์€ ํ”„๋กœ์„ธ์„œ์˜ ์˜๊ตฌ ๊ณ ์žฅ์ด ๋ฐœ์ƒํ•˜์˜€์„ ๋•Œ, ์ „์ฒด ์‘์šฉ๋“ค์„ ์‹œ๊ฐ„ ์ œ์•ฝ ํ•˜์— ์ฒ˜๋ฆฌ๋Ÿ‰์˜ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉฐ ์žฌ์Šค์ผ€์ฅด์„ ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ตœ์ ์˜ ์žฌ์Šค์ผ€์ฅด ๊ฒฐ๊ณผ๋“ค์€ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ์ปดํŒŒ์ผ ์‹œ์—, ๊ฐ๊ฐ์˜ ํ”„๋กœ์„ธ์„œ ๊ณ ์žฅ ์ƒํ™ฉ์— ๋”ฐ๋ผ ์ค€๋น„๊ฐ€ ๋œ๋‹ค. ์ˆ˜ํ–‰ ์‹œ๊ฐ„์— ํ”„๋กœ์„ธ์„œ ๊ณ ์žฅ์ด ๊ฐ์ง€๋˜๋ฉด, ์ •์ƒ์ ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํ”„๋กœ์„ธ์„œ๋“ค์ด ์ €์žฅ๋œ ์Šค์ผ€์ฅด์„ ๊ฐ€์ง€๊ณ  ํƒœ์Šคํฌ ์ด์ฃผ๋ฅผ ์ˆ˜ํ–‰ํ•œ ํ›„ ํƒœ์Šคํฌ๋“ค์˜ ๋‚˜๋จธ์ง€ ์ˆ˜ํ–‰์„ ์ง€์†ํ•œ๋‹ค. ์ด ๊ธฐ๋ฒ•์—์„œ๋Š” ๋˜ํ•œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ์–ป๊ธฐ ์œ„ํ•ด, ์„ ์ , ๋น„์„ ์  ๋ฐ ์œตํ•ฉ ์ด์ฃผ ์ •์ฑ…์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ๊ฐ€๋Šฅ์„ฑ์€ ์‹ค์ œ ๋””์ง€ํ„ธ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ์‘์šฉ๋“ค๊ณผ ์ž„์˜๋กœ ์ƒ์„ฑ๋œ ์‘์šฉ๋“ค์— ๋Œ€ํ•ด ์‹œ๊ฐ„์ œ์•ฝ๊ณผ ๋‹ค์–‘ํ•œ ํ”„๋กœ์„ธ์„œ ๊ณ ์žฅ ์ƒํ™ฉ์— ๋Œ€ํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๋ณตํ•ฉ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์œผ๋กœ, ์ฒซ๋ฒˆ์งธ ๊ธฐ๋ฒ•์—์„œ ๋‹ค๋ฃฌ ํ”„๋กœ์„ธ์„œ ์˜๊ตฌ๊ณ ์žฅ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋™๊ธฐํ™” ๋ฐ์ดํƒ€-ํ๋ฆ„ ๊ทธ๋ž˜ํ”„๋กœ ๊ธฐ์ˆ ๋œ ์—ฌ๋Ÿฌ ์‘์šฉ๋“ค๊ณผ ์‘์šฉ๋“ค์˜ ๋™์  ์–‘์ƒ์„ ๋‹ค๋ฃจ๋Š” ๊ฒƒ๊นŒ์ง€๋กœ ํ™•์žฅ์ด ๋œ ๊ฒƒ์ด๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์—์„œ๋Š”, ์šฐ์„  ์„ค๊ณ„ ์ˆ˜์ค€์—์„œ ํ• ๋‹น๋˜๋Š” ํ”„๋กœ์„ธ์„œ์˜ ๊ฐฏ์ˆ˜๋ฅผ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉด์„œ ๋™๊ธฐํ™”๋œ ๋ฐ์ดํƒ€-ํ๋ฆ„ ๊ทธ๋ž˜ํ”„๋“ค์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์ด ์ตœ๋Œ€๋กœ ์–ป์–ด์ง€๋Š” ๋งคํ•‘ ๊ฒฐ๊ณผ๋“ค์„ ์–ป๋Š”๋‹ค. ๊ทธ๋ฆฌ๊ณ ๋‚˜์„œ ์ˆ˜ํ–‰ ์‹œ๊ฐ„์—๋Š” ๋ฏธ๋ฆฌ ๊ณ„์‚ฐ๋œ ๋งคํ•‘ ์ •๋ณด๋“ค์„ ๊ฐ€์ง€๊ณ  ์ˆ˜ํ–‰์ค‘์ธ ์‘์šฉ๋“ค์˜ ๋งคํ•‘์„, ๋™์ ์ธ ์‹œ์Šคํ…œ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ•  ๋•Œ๋งˆ๋‹ค ์ ์šฉํ•˜๊ฒŒ ๋œ๋‹ค. ์ œ์•ˆ๋œ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์€ Noxim์ด๋ผ๋Š” ๋„คํŠธ์›Œํฌ-์˜จ-์นฉ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์œ„์—์„œ ๊ตฌํ˜„์ด ๋˜์—ˆ์œผ๋ฉฐ, ์‹คํ—˜ ๊ฒฐ๊ณผ๋“ค์€ ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์ด ์ตœ์‹ ์˜ ๋‹ค๋ฅธ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ๋Š”, ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ์‹œ์Šคํ…œ-์˜จ-์นฉ ์ œ์ž‘ ์ด์ „์— ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ๋‘ ๋ฒˆ์งธ ๊ธฐ๋ฒ•์„ ๊ตฌํ˜„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ํ”Œ๋žซํผ์ด ๋งค๋‹ˆ์ฝ”์–ด ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๊ธฐ์กด์˜ ๋งค๋‹ˆ์ฝ”์–ด ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ƒ์œ„ ์ˆ˜์ค€์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ ์„ฑ๋Šฅ๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์„ฑ๋Šฅ์ด ์–ผ๋งˆ๋‚˜ ์ฐจ์ด๊ฐ€ ๋‚ ์ง€๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์•Œ ์ˆ˜๊ฐ€ ์—†์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์†Œํ”„ํŠธ์›จ์–ด ํ”Œ๋žซํผ๊ณผ, ๊ฐ€์ƒ ํ”„๋กœํ† ํƒ€์ดํ•‘ ์‹œ์Šคํ…œ ๋ฐ ์ œ์˜จ ์—๋ฎฌ๋ ˆ์ด์…˜ ์‹œ์Šคํ…œ์—์„œ์˜ ํ”Œ๋žซํผ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์ด ์ œ์•ˆ์ด ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹ค์ œ ์‹œ์Šคํ…œ ๊ตฌํ˜„์„ ํ†ตํ•˜์—ฌ ์ œ์•ˆ๋œ ๋ณตํ•ฉ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์—์„œ์˜ ๋‹ค์–‘ํ•œ ๋™์  ๋น„์šฉ๋“ค์ด ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์‚ฐ์ด ๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ์ œ์•ˆ๋œ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฒ•์ด ํƒœ์Šคํฌ๋“ค์˜ ๋™์  ๋งคํ•‘๊ณผ ์ฒดํฌ-ํฌ์ธํŒ…์„ ํ†ตํ•œ ํ”„๋กœ์„ธ์„œ ์˜๊ตฌ ๊ณ ์žฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ๋‚ดํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Owing to the incessant technology improvement, the number of processors integrated into a single chip increases consistently, integrating more and more applications. Also, demand for higher computing capability for applications makes a many-core accelerator become an important computing resource in a system-on-chip. Efficient handling of the accelerator at run-time, however, is very challenging because the system status is subject to change dynamically by various factors. At the system level, the set of applications running concurrently may change according to user request. At the application level, the application behavior may change dynamically depending on input data or operation mode. At the architecture level, hardware resource availability may vary since hardware components may experience transient or permanent failures. In this thesis, to resolve the difficulties in handling many-core accelerator, three techniques are proposed. The first technique is the re-scheduling of the entire application to minimize throughput degradation under a latency constraint when a permanent processor failure occurs. Sub-optimal re-scheduling results using a genetic algorithm for each scenario of processor failures are obtained at compile-time. If a failure is detected at run-time, the live processors obtain the saved schedule, perform task transfer, and execute the remaining tasks of the current iteration. In this technique, preemptive and non-preemptive migration policies and a hybrid policy are proposed to obtain better performance. The viability of the proposed technique with real-life DSP applications as well as randomly generated graphs under timing constraints and random fault scenarios are shown through experiments. The second technique is a hybrid resource management scheme, expanded version of the first technique that also handles multi-applications specified as SDF graph and their relevant dynamisms such as application/task arrivals/ends as well as processor permanent failures. In the proposed technique, at design-time, throughput-maximized mappings of each SDF graph by varying the number of allocated processors are determined. Then, at run-time, the pre-computed mapping information is exploited to adjust the mapping of active applications to the processors without user intervention on the system status change. The proposed resource management is evaluated through intensive experiments with an in-house simulator built on top of Noxim, a Network-on-Chip simulator. Experimental results show the enhanced adaptability to dynamic system status change compared to other state-of-the-art approaches. Finally, the software platform for a homogeneous many-core architecture that implements the second technique is proposed to evaluate the system performance more accurately before SoC fabrication. Existing approaches usually use a high-level simulation model to estimate the performance without knowing how much actual performance will be deviated from the estimation. To overcome the limitation, the software platform is proposed and implementation details on a virtual prototyping system and on an emulation system realized with an Intel Xeon-Phi coprocessor are presented. Actual implementation enables us to investigate the overheads involved in the hybrid resource management technique in detail, which was not possible in high-level simulation. Experimental results confirm that the proposed software platform adapts to the dynamic workload variation effectively by dynamic mapping of tasks and tolerate unexpected core failures by check-pointing.Abstract i Contents iv List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . 5 1.3 Thesis Organization . . . . . . . . . . . 7 Chapter 2 Preliminaries 8 2.1 Application Model . . . . . . . . . . 8 2.2 Architecture Model . . . . . . . . . . 13 2.3 Fault Model . . . . . . . . . . . . 15 2.4 Thesis Overview . . . . . . . . . . . 15 Chapter 3 Fault-aware Task Mapping 17 3.1 Introduction . . . . . . . . . . . . 17 3.2 Related Work . . . . . . . . . . . . 20 3.2.1 Static Approach . . . . . . . . . . 21 3.2.2 Dynamic Approach . . . . . . . . . . 22 3.3 Proposed Task Remapping/Rescheduling Technique . . 23 3.3.1 Remapping Technique . . . . . . . . 23 3.3.2 Rescheduling Technique . . . . . . . . 31 3.4 Experiments . . . . . . . . . . . . . 38 3.4.1 Remapping Results . . . . . . . . 38 3.4.2 Rescheduling Results . . . . . . . . 46 Chapter 4 Fault-aware Resource Management 53 4.1 Introduction . . . . . . . . . . . . 53 4.2 Related Work . . . . . . . . . . . . 54 4.2.1 Static Approach . . . . . . . . . . 55 4.2.2 Dynamic Approach . . . . . . . . . 55 4.2.3 Hybrid Approach . . . . . . . . . . 57 4.2.4 Summary . . . . . . . . . . . . 57 4.3 Background . . . . . . . . . . . . . 58 4.3.1 Energy Model . . . . . . . . . . . 59 4.3.2 Notation . . . . . . . . . . . . 60 4.4 Proposed Resource Management Technique . . . . 61 4.4.1 Motivational Example . . . . . . . . . 61 4.4.2 Overall Procedure . . . . . . . . . . 65 4.4.3 Design-time Analysis . . . . . . . . . 66 4.4.4 Run-time Mapping . . . . . . . . . . 67 4.5 Experiments . . . . . . . . . . . . . 74 4.5.1 Setup . . . . . . . . . . . . . . 74 4.5.2 Analysis of Run-time Overheads . . . . . . 75 4.5.3 Comparison with Other Approaches . . . . 79 Chapter 5 Software Platform for Resource Management 86 5.1 Introduction . . . . . . . . . . . . 86 5.2 Related Work . . . . . . . . . . . . 87 5.3 Overall Structure . . . . . . . . . . . . 88 5.4 Components of Software Platform . . . . . . 89 5.4.1 Application API Layer . . . . . . . . . 89 5.4.2 Communication Interface Module . . . . . 92 5.4.3 Host Interface Layer . . . . . . . . . 93 5.4.4 Memory Management Module . . . . . . 94 5.4.5 Design-time Analysis . . . . . . . . . 94 5.4.6 Slave Manager . . . . . . . . . . . 98 5.5 Software Platform Implementation . . . . . . 99 5.5.1 Scheduling Information . . . . . . . . 100 5.5.2 Function Migration and Execution . . . . . 101 5.5.3 Function Migration and Execution . . . . . 102 5.6 Virtual Prototyping System . . . . . . . . 105 5.7 Xeon Emulation System . . . . . . . . . 106 5.8 Experiments . . . . . . . . . . . . . 107 5.8.1 Setup . . . . . . . . . . . . . . 107 5.8.2 Experiments on the Virtual Prototyping System . . 108 5.8.3 Experiments on the Xeon Emulation System . . . 111 Chapter 6 Conclusion 116 Bibliography 119 Abstract in Korean 130Docto

    A Dependability Solution for Homogeneous MPSoCs

    No full text
    Nowadays highly dependable electronic devices are demanded by many safety-critical applications. Dependability attributes such as reliability and availability/maintainability of a many-processor system-on-chip (MPSoC) should already be examined at the design phase. Design for dependability approaches such as using available fault-free processor-cores and introducing a dependability manager infrastructural IP for self- test and evaluation can greatly enhance the dependability of an MPSoC. This is further supported by subsequent software-based repair. Design choices such as test fault coverage, test and repair time are examined to optimize the dependability attributes. Utilizing existing infrastructures like a network-on-chip (NoC) and tile-wrappers are needed to ensure a test can be performed at application run-time. An example design following the proposed design for dependability approach is shown. The MPSoC has been processed and measurement results have validated the proposed dependability approach
    corecore