109,553 research outputs found

    Help me describe my data: A demonstration of the Open PHACTS VoID Editor

    Get PDF
    Abstract. The Open PHACTS VoID Editor helps non-Semantic Web experts to create machine interpretable descriptions for their datasets. The web app guides the user, an expert in the domain of the data, through a series of questions to capture details of their dataset and then generates a VoID dataset description. The generated dataset description conforms to the Open PHACTS dataset description guidelines that en-sure suitable provenance information is available about the dataset to enable its discovery and reuse

    Will this work for Susan? Challenges for delivering usable and useful generic linked data browsers

    No full text
    While we witness an explosion of exploration tools for simple datasets on Web 2.0 designed for use by ordinary citizens, the goal of a usable interface for supporting navigation and sense-making over arbitrary linked data has remained elusive. The purpose of this paper is to analyse why - what makes exploring linked data so hard? Through a user-centered use case scenario, we work through requirements for sense making with data to extract functional requirements and to compare these against our tools to see what challenges emerge to deliver a useful, usable knowledge building experience with linked data. We present presentation layer and heterogeneous data integration challenges and offer practical considerations for moving forward to effective linked data sensemaking tools

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning
    corecore