408 research outputs found

    FastPay: High-Performance Byzantine Fault Tolerant Settlement

    Get PDF
    FastPay allows a set of distributed authorities, some of which are Byzantine, to maintain a high-integrity and availability settlement system for pre-funded payments. It can be used to settle payments in a native unit of value (crypto-currency), or as a financial side-infrastructure to support retail payments in fiat currencies. FastPay is based on Byzantine Consistent Broadcast as its core primitive, foregoing the expenses of full atomic commit channels (consensus). The resulting system has low-latency for both confirmation and payment finality. Remarkably, each authority can be sharded across many machines to allow unbounded horizontal scalability. Our experiments demonstrate intra-continental confirmation latency of less than 100ms, making FastPay applicable to point of sale payments. In laboratory environments, we achieve over 80,000 transactions per second with 20 authorities---surpassing the requirements of current retail card payment networks, while significantly increasing their robustness

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa
    • …
    corecore