4 research outputs found

    A methodology for the design of application-specific cyber-physical social sensing co-simulators

    Get PDF
    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal

    A Delay-Aware and Reliable Data Aggregation for Cyber-Physical Sensing

    No full text
    Physical information sensed by various sensors in a cyber-physical system should be collected for further operation. In many applications, data aggregation should take reliability and delay into consideration. To address these problems, a novel Tiered Structure Routing-based Delay-Aware and Reliable Data Aggregation scheme named TSR-DARDA for spherical physical objects is proposed. By dividing the spherical network constructed by dispersed sensor nodes into circular tiers with specifically designed widths and cells, TSTR-DARDA tries to enable as many nodes as possible to transmit data simultaneously. In order to ensure transmission reliability, lost packets are retransmitted. Moreover, to minimize the latency while maintaining reliability for data collection, in-network aggregation and broadcast techniques are adopted to deal with the transmission between data collecting nodes in the outer layer and their parent data collecting nodes in the inner layer. Thus, the optimization problem is transformed to minimize the delay under reliability constraints by controlling the system parameters. To demonstrate the effectiveness of the proposed scheme, we have conducted extensive theoretical analysis and comparisons to evaluate the performance of TSR-DARDA. The analysis and simulations show that TSR-DARDA leads to lower delay with reliability satisfaction

    A Delay-Aware and Reliable Data Aggregation for Cyber-Physical Sensing

    No full text
    Physical information sensed by various sensors in a cyber-physical system should be collected for further operation. In many applications, data aggregation should take reliability and delay into consideration. To address these problems, a novel Tiered Structure Routing-based Delay-Aware and Reliable Data Aggregation scheme named TSR-DARDA for spherical physical objects is proposed. By dividing the spherical network constructed by dispersed sensor nodes into circular tiers with specifically designed widths and cells, TSTR-DARDA tries to enable as many nodes as possible to transmit data simultaneously. In order to ensure transmission reliability, lost packets are retransmitted. Moreover, to minimize the latency while maintaining reliability for data collection, in-network aggregation and broadcast techniques are adopted to deal with the transmission between data collecting nodes in the outer layer and their parent data collecting nodes in the inner layer. Thus, the optimization problem is transformed to minimize the delay under reliability constraints by controlling the system parameters. To demonstrate the effectiveness of the proposed scheme, we have conducted extensive theoretical analysis and comparisons to evaluate the performance of TSR-DARDA. The analysis and simulations show that TSR-DARDA leads to lower delay with reliability satisfaction

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&
    corecore