207 research outputs found

    Random Surfing Without Teleportation

    Full text link
    In the standard Random Surfer Model, the teleportation matrix is necessary to ensure that the final PageRank vector is well-defined. The introduction of this matrix, however, results in serious problems and imposes fundamental limitations to the quality of the ranking vectors. In this work, building on the recently proposed NCDawareRank framework, we exploit the decomposition of the underlying space into blocks, and we derive easy to check necessary and sufficient conditions for random surfing without teleportation.Comment: 13 pages. Published in the Volume: "Algorithms, Probability, Networks and Games, Springer-Verlag, 2015". (The updated version corrects small typos/errors

    07071 Abstracts Collection -- Web Information Retrieval and Linear Algebra Algorithms

    Get PDF
    From 12th to 16th February 2007, the Dagstuhl Seminar 07071 ``Web Information Retrieval and Linear Algebra Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Multiscale mixing patterns in networks

    Full text link
    Assortative mixing in networks is the tendency for nodes with the same attributes, or metadata, to link to each other. It is a property often found in social networks manifesting as a higher tendency of links occurring between people with the same age, race, or political belief. Quantifying the level of assortativity or disassortativity (the preference of linking to nodes with different attributes) can shed light on the factors involved in the formation of links and contagion processes in complex networks. It is common practice to measure the level of assortativity according to the assortativity coefficient, or modularity in the case of discrete-valued metadata. This global value is the average level of assortativity across the network and may not be a representative statistic when mixing patterns are heterogeneous. For example, a social network spanning the globe may exhibit local differences in mixing patterns as a consequence of differences in cultural norms. Here, we introduce an approach to localise this global measure so that we can describe the assortativity, across multiple scales, at the node level. Consequently we are able to capture and qualitatively evaluate the distribution of mixing patterns in the network. We find that for many real-world networks the distribution of assortativity is skewed, overdispersed and multimodal. Our method provides a clearer lens through which we can more closely examine mixing patterns in networks.Comment: 11 pages, 7 figure
    • …
    corecore