8,248 research outputs found

    A Deep and Tractable Density Estimator

    Get PDF
    The Neural Autoregressive Distribution Estimator (NADE) and its real-valued version RNADE are competitive density models of multidimensional data across a variety of domains. These models use a fixed, arbitrary ordering of the data dimen-sions. One can easily condition on variables at the beginning of the ordering, and marginalize out variables at the end of the ordering, however other inference tasks require approximate infer-ence. In this work we introduce an efficient pro-cedure to simultaneously train a NADE model for each possible ordering of the variables, by shar-ing parameters across all these models. We can thus use the most convenient model for each infer-ence task at hand, and ensembles of such models with different orderings are immediately available. Moreover, unlike the original NADE, our train-ing procedure scales to deep models. Empirically, ensembles of Deep NADE models obtain state of the art density estimation performance. 1

    Hierarchical Implicit Models and Likelihood-Free Variational Inference

    Full text link
    Implicit probabilistic models are a flexible class of models defined by a simulation process for data. They form the basis for theories which encompass our understanding of the physical world. Despite this fundamental nature, the use of implicit models remains limited due to challenges in specifying complex latent structure in them, and in performing inferences in such models with large data sets. In this paper, we first introduce hierarchical implicit models (HIMs). HIMs combine the idea of implicit densities with hierarchical Bayesian modeling, thereby defining models via simulators of data with rich hidden structure. Next, we develop likelihood-free variational inference (LFVI), a scalable variational inference algorithm for HIMs. Key to LFVI is specifying a variational family that is also implicit. This matches the model's flexibility and allows for accurate approximation of the posterior. We demonstrate diverse applications: a large-scale physical simulator for predator-prey populations in ecology; a Bayesian generative adversarial network for discrete data; and a deep implicit model for text generation.Comment: Appears in Neural Information Processing Systems, 201

    Generative Image Modeling Using Spatial LSTMs

    Full text link
    Modeling the distribution of natural images is challenging, partly because of strong statistical dependencies which can extend over hundreds of pixels. Recurrent neural networks have been successful in capturing long-range dependencies in a number of problems but only recently have found their way into generative image models. We here introduce a recurrent image model based on multi-dimensional long short-term memory units which are particularly suited for image modeling due to their spatial structure. Our model scales to images of arbitrary size and its likelihood is computationally tractable. We find that it outperforms the state of the art in quantitative comparisons on several image datasets and produces promising results when used for texture synthesis and inpainting

    Mining gold from implicit models to improve likelihood-free inference

    Full text link
    Simulators often provide the best description of real-world phenomena. However, they also lead to challenging inverse problems because the density they implicitly define is often intractable. We present a new suite of simulation-based inference techniques that go beyond the traditional Approximate Bayesian Computation approach, which struggles in a high-dimensional setting, and extend methods that use surrogate models based on neural networks. We show that additional information, such as the joint likelihood ratio and the joint score, can often be extracted from simulators and used to augment the training data for these surrogate models. Finally, we demonstrate that these new techniques are more sample efficient and provide higher-fidelity inference than traditional methods.Comment: Code available at https://github.com/johannbrehmer/simulator-mining-example . v2: Fixed typos. v3: Expanded discussion, added Lotka-Volterra example. v4: Improved clarit
    corecore