35 research outputs found

    Deep learning stereo matching algorithm using Siamese network

    Get PDF
    Autonomous vehicle has become a very hot topic for researchers in recent years. One of the important sensors used in these vehicles is Stereo Cameras/Vision. Stereo vision systems are used to estimate the depth from the two cameras installed on robots or vehicles. This method can deliver the 3D position of all objects captured in the scene at a lower cost and higher density compared to LIDAR. Recently, neural net-works are vastly investigated and used in image processing problems and deep learning networks which has surpassed traditional computer vision methods specially in object recognition. In this paper, we propose to use a GPU with a new Siamese deep learning method to speed up the stereo matching algorithm. In this work, we use a high end Nvidia DGX workstation to train and test our algorithm and compare the results with normal GPUs and CPUs. Based on numerical evaluation, the Nvidia DGX can train a neural network with higher input image resolution approximately 8 times faster than a normal GPU and 40 times faster than a Core i7 8 Cores CPU. Since it has the ability to train on a higher resolution the network can be trained in more iteration and results in higher accuracy

    Deep Eyes: Binocular Depth-from-Focus on Focal Stack Pairs

    Full text link
    Human visual system relies on both binocular stereo cues and monocular focusness cues to gain effective 3D perception. In computer vision, the two problems are traditionally solved in separate tracks. In this paper, we present a unified learning-based technique that simultaneously uses both types of cues for depth inference. Specifically, we use a pair of focal stacks as input to emulate human perception. We first construct a comprehensive focal stack training dataset synthesized by depth-guided light field rendering. We then construct three individual networks: a Focus-Net to extract depth from a single focal stack, a EDoF-Net to obtain the extended depth of field (EDoF) image from the focal stack, and a Stereo-Net to conduct stereo matching. We show how to integrate them into a unified BDfF-Net to obtain high-quality depth maps. Comprehensive experiments show that our approach outperforms the state-of-the-art in both accuracy and speed and effectively emulates human vision systems

    Sparse-to-Continuous: Enhancing Monocular Depth Estimation using Occupancy Maps

    Full text link
    This paper addresses the problem of single image depth estimation (SIDE), focusing on improving the quality of deep neural network predictions. In a supervised learning scenario, the quality of predictions is intrinsically related to the training labels, which guide the optimization process. For indoor scenes, structured-light-based depth sensors (e.g. Kinect) are able to provide dense, albeit short-range, depth maps. On the other hand, for outdoor scenes, LiDARs are considered the standard sensor, which comparatively provides much sparser measurements, especially in areas further away. Rather than modifying the neural network architecture to deal with sparse depth maps, this article introduces a novel densification method for depth maps, using the Hilbert Maps framework. A continuous occupancy map is produced based on 3D points from LiDAR scans, and the resulting reconstructed surface is projected into a 2D depth map with arbitrary resolution. Experiments conducted with various subsets of the KITTI dataset show a significant improvement produced by the proposed Sparse-to-Continuous technique, without the introduction of extra information into the training stage.Comment: Accepted. (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Guided Stereo Matching

    Full text link
    Stereo is a prominent technique to infer dense depth maps from images, and deep learning further pushed forward the state-of-the-art, making end-to-end architectures unrivaled when enough data is available for training. However, deep networks suffer from significant drops in accuracy when dealing with new environments. Therefore, in this paper, we introduce Guided Stereo Matching, a novel paradigm leveraging a small amount of sparse, yet reliable depth measurements retrieved from an external source enabling to ameliorate this weakness. The additional sparse cues required by our method can be obtained with any strategy (e.g., a LiDAR) and used to enhance features linked to corresponding disparity hypotheses. Our formulation is general and fully differentiable, thus enabling to exploit the additional sparse inputs in pre-trained deep stereo networks as well as for training a new instance from scratch. Extensive experiments on three standard datasets and two state-of-the-art deep architectures show that even with a small set of sparse input cues, i) the proposed paradigm enables significant improvements to pre-trained networks. Moreover, ii) training from scratch notably increases accuracy and robustness to domain shifts. Finally, iii) it is suited and effective even with traditional stereo algorithms such as SGM.Comment: CVPR 201
    corecore