4,107 research outputs found

    A Deep Learning Reconstruction Framework for Differential Phase-Contrast Computed Tomography with Incomplete Data

    Full text link
    Differential phase-contrast computed tomography (DPC-CT) is a powerful analysis tool for soft-tissue and low-atomic-number samples. Limited by the implementation conditions, DPC-CT with incomplete projections happens quite often. Conventional reconstruction algorithms are not easy to deal with incomplete data. They are usually involved with complicated parameter selection operations, also sensitive to noise and time-consuming. In this paper, we reported a new deep learning reconstruction framework for incomplete data DPC-CT. It is the tight coupling of the deep learning neural network and DPC-CT reconstruction algorithm in the phase-contrast projection sinogram domain. The estimated result is the complete phase-contrast projection sinogram not the artifacts caused by the incomplete data. After training, this framework is determined and can reconstruct the final DPC-CT images for a given incomplete phase-contrast projection sinogram. Taking the sparse-view DPC-CT as an example, this framework has been validated and demonstrated with synthetic and experimental data sets. Embedded with DPC-CT reconstruction, this framework naturally encapsulates the physical imaging model of DPC-CT systems and is easy to be extended to deal with other challengs. This work is helpful to push the application of the state-of-the-art deep learning theory in the field of DPC-CT

    Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging

    Full text link
    We propose a physics-assisted deep learning (DL) framework for large space-bandwidth product (SBP) phase imaging. We design an asymmetric coded illumination scheme to encode high-resolution phase information across a wide field-of-view. We then develop a matching DL algorithm to provide large-SBP phase estimation. We show that this illumination coding scheme is highly scalable in achieving flexible resolution, and robust to experimental variations. We demonstrate this technique on both static and dynamic biological samples, and show that it can reliably achieve 5X resolution enhancement across 4X FOVs using only five multiplexed measurements -- more than 10X data reduction over the state-of-the-art. Typical DL algorithms tend to provide over-confident predictions, whose errors are only discovered in hindsight. We develop an uncertainty learning framework to overcome this limitation and provide predictive assessment to the reliability of the DL prediction. We show that the predicted uncertainty maps can be used as a surrogate to the true error. We validate the robustness of our technique by analyzing the model uncertainty. We quantify the effect of noise, model errors, incomplete training data, and "out-of-distribution" testing data by assessing the data uncertainty. We further demonstrate that the predicted credibility maps allow identifying spatially and temporally rare biological events. Our technique enables scalable AI-augmented large-SBP phase imaging with dependable predictions.Published versio

    Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy

    Get PDF
    Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems
    • …
    corecore