2 research outputs found

    Engagement Assessment for the Educational Web-Service Based on Largest Lyapunov Exponent Calculation for User Reaction Time Series

    Get PDF
    Contemporary digital platforms provide a large number of web services for learning and professional growth. In most cases, educational web services only control access when connecting to resources and platforms. However, for educational and similar resources (internet surveys, online research), which are characterized by interactive interaction with the platform, it is important to assess user engagement in the learning process. A fairly large body of research is devoted to assessing learner engagement based on automatic, semi-automatic, and manual methods. Those methods include self-observation, observation checklists, engagement tracing based on learner reaction time and accuracy, computer vision methods (analysis of facial expressions, gestures, and postures, eye movements), methods for analyzing body sensor data, etc. Computer vision and body sensor methods for assessing engagement give a more complete objective picture of the learner’s state for further analysis in comparison with the methods of engagement tracing based on learner’s reaction time, however, they require the presence of appropriate sensors, which may often not be applicable in a particular context. Sensory observation is explicit to the learner and is an additional stressor, such as knowing the learner is being captured by the webcam while solving a problem. Thus, the further development of the hidden engagement assessment methods is relevant, while new computationally efficient techniques of converting the initial signal about the learner’s reaction time to assess engagement can be applied. On the basis of the hypothesis about the randomness of the dynamics of the time series, the largest Lyapunov exponent can be calculated for the time series formed from the reaction time of learners during prolonged work with web interfaces to assess the learner’s engagement. A feature of the proposed engagement assessment method is the relatively high computational efficiency, absence of high traffic loads in comparison with computer vision as well as secrecy from the learner coupled with no processing of learner’s personal or physical data except the reaction time to questions displayed on the screen. The results of experimental studies on a large amount of data are presented, demonstrating the applicability of the selected technique for learner’s engagement assessment. © 2023 by the authors.Russian Science Foundation, RSFThis study was supported by a grant (No. 17-78-30028) from the Russian Science Foundation

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore