457 research outputs found

    DxNAT - Deep Neural Networks for Explaining Non-Recurring Traffic Congestion

    Full text link
    Non-recurring traffic congestion is caused by temporary disruptions, such as accidents, sports games, adverse weather, etc. We use data related to real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over a year from Nashville, TN to train a multi-layered deep neural network. The traffic dataset contains over 900 million data records. The network is thereafter used to classify the real-time data and identify anomalous operations. Compared with traditional approaches of using statistical or machine learning techniques, our model reaches an accuracy of 98.73 percent when identifying traffic congestion caused by football games. Our approach first encodes the traffic across a region as a scaled image. After that the image data from different timestamps is fused with event- and time-related data. Then a crossover operator is used as a data augmentation method to generate training datasets with more balanced classes. Finally, we use the receiver operating characteristic (ROC) analysis to tune the sensitivity of the classifier. We present the analysis of the training time and the inference time separately

    Applications of Machine Learning to Threat Intelligence, Intrusion Detection and Malware

    Get PDF
    Artificial Intelligence (AI) and Machine Learning (ML) are emerging technologies with applications to many fields. This paper is a survey of use cases of ML for threat intelligence, intrusion detection, and malware analysis and detection. Threat intelligence, especially attack attribution, can benefit from the use of ML classification. False positives from rule-based intrusion detection systems can be reduced with the use of ML models. Malware analysis and classification can be made easier by developing ML frameworks to distill similarities between the malicious programs. Adversarial machine learning will also be discussed, because while ML can be used to solve problems or reduce analyst workload, it also introduces new attack surfaces

    Cell fault management using machine learning techniques

    Get PDF
    This paper surveys the literature relating to the application of machine learning to fault management in cellular networks from an operational perspective. We summarise the main issues as 5G networks evolve, and their implications for fault management. We describe the relevant machine learning techniques through to deep learning, and survey the progress which has been made in their application, based on the building blocks of a typical fault management system. We review recent work to develop the abilities of deep learning systems to explain and justify their recommendations to network operators. We discuss forthcoming changes in network architecture which are likely to impact fault management and offer a vision of how fault management systems can exploit deep learning in the future. We identify a series of research topics for further study in order to achieve this

    Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence

    Full text link
    The evolution of cybersecurity has spurred the emergence of autonomous threat hunting as a pivotal paradigm in the realm of AI-driven threat intelligence. This review navigates through the intricate landscape of autonomous threat hunting, exploring its significance and pivotal role in fortifying cyber defense mechanisms. Delving into the amalgamation of artificial intelligence (AI) and traditional threat intelligence methodologies, this paper delineates the necessity and evolution of autonomous approaches in combating contemporary cyber threats. Through a comprehensive exploration of foundational AI-driven threat intelligence, the review accentuates the transformative influence of AI and machine learning on conventional threat intelligence practices. It elucidates the conceptual framework underpinning autonomous threat hunting, spotlighting its components, and the seamless integration of AI algorithms within threat hunting processes.. Insightful discussions on challenges encompassing scalability, interpretability, and ethical considerations in AI-driven models enrich the discourse. Moreover, through illuminating case studies and evaluations, this paper showcases real-world implementations, underscoring success stories and lessons learned by organizations adopting AI-driven threat intelligence. In conclusion, this review consolidates key insights, emphasizing the substantial implications of autonomous threat hunting for the future of cybersecurity. It underscores the significance of continual research and collaborative efforts in harnessing the potential of AI-driven approaches to fortify cyber defenses against evolving threats

    Designing the next generation intelligent transportation sensor system using big data driven machine learning techniques

    Get PDF
    Accurate traffic data collection is essential for supporting advanced traffic management system operations. This study investigated a large-scale data-driven sequential traffic sensor health monitoring (TSHM) module that can be used to monitor sensor health conditions over large traffic networks. Our proposed module consists of three sequential steps for detecting different types of abnormal sensor issues. The first step detects sensors with abnormally high missing data rates, while the second step uses clustering anomaly detection to detect sensors reporting abnormal records. The final step introduces a novel Bayesian changepoint modeling technique to detect sensors reporting abnormal traffic data fluctuations by assuming a constant vehicle length distribution based on average effective vehicle length (AEVL). Our proposed method is then compared with two benchmark algorithms to show its efficacy. Results obtained by applying our method to the statewide traffic sensor data of Iowa show it can successfully detect different classes of sensor issues. This demonstrates that sequential TSHM modules can help transportation agencies determine traffic sensors’ exact problems, thereby enabling them to take the required corrective steps. The second research objective will focus on the traffic data imputation after we discard the anomaly/missing data collected from failure traffic sensors. Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and other traffic operation tasks. Nonetheless, missing traffic data are a common issue in sensor data which is inevitable due to several reasons, such as malfunctioning, poor maintenance or calibration, and intermittent communications. Such missing data issues often make data analysis and decision-making complicated and challenging. In this study, we have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TSDIGAN) to efficiently reconstruct the missing data by generating realistic synthetic data. In recent years, GANs have shown impressive success in image data generation. However, generating traffic data by taking advantage of GAN based modeling is a challenging task, since traffic data have strong time dependency. To address this problem, we propose a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF) that converts the problem of traffic time-series data generation into that of image generation. We have evaluated and tested our proposed model using the benchmark dataset provided by Caltrans Performance Management Systems (PeMS). This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset. Further, the model achieves reasonably high accuracy in imputation tasks even under a very high missing data rate (\u3e50%), which shows the robustness and efficiency of the proposed model. Besides the loop and radar sensors, traffic cameras have shown great ability to provide insightful traffic information using the image and video processing techniques. Therefore, the third and final part of this work aimed to introduce an end to end real-time cloud-enabled traffic video analysis (IVA) framework to support the development of the future smart city. As Artificial intelligence (AI) growing rapidly, Computer vision (CV) techniques are expected to significantly improve the development of intelligent transportation systems (ITS), which are anticipated to be a key component of future Smart City (SC) frameworks. Powered by computer vision techniques, the converting of existing traffic cameras into connected ``smart sensors called intelligent video analysis (IVA) systems has shown the great capability of producing insightful data to support ITS applications. However, developing such IVA systems for large-scale, real-time application deserves further study, as the current research efforts are focused more on model effectiveness instead of model efficiency. Therefore, we have introduced a real-time, large-scale, cloud-enabled traffic video analysis framework using NVIDIA DeepStream, which is a streaming analysis toolkit for AI-based video and image analysis. In this study, we have evaluated the technical and economic feasibility of our proposed framework to help traffic agency to build IVA systems more efficiently. Our study shows that the daily operating cost for our proposed framework on Google Cloud Platform (GCP) is less than $0.14 per camera, and that, compared with manual inspections, our framework achieves an average vehicle-counting accuracy of 83.7% on sunny days

    AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges

    Full text link
    Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes, particularly in cloud infrastructures, to provide actionable insights with the primary goal of maximizing availability. There are a wide variety of problems to address, and multiple use-cases, where AI capabilities can be leveraged to enhance operational efficiency. Here we provide a review of the AIOps vision, trends challenges and opportunities, specifically focusing on the underlying AI techniques. We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful. We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions. We discuss the problem formulation for each task, and then present a taxonomy of techniques to solve these problems. We also identify relatively under explored topics, especially those that could significantly benefit from advances in AI literature. We also provide insights into the trends in this field, and what are the key investment opportunities
    • …
    corecore