5,456 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Joint Deep Modeling of Users and Items Using Reviews for Recommendation

    Full text link
    A large amount of information exists in reviews written by users. This source of information has been ignored by most of the current recommender systems while it can potentially alleviate the sparsity problem and improve the quality of recommendations. In this paper, we present a deep model to learn item properties and user behaviors jointly from review text. The proposed model, named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel neural networks coupled in the last layers. One of the networks focuses on learning user behaviors exploiting reviews written by the user, and the other one learns item properties from the reviews written for the item. A shared layer is introduced on the top to couple these two networks together. The shared layer enables latent factors learned for users and items to interact with each other in a manner similar to factorization machine techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all baseline recommender systems on a variety of datasets.Comment: WSDM 201

    Attentive Neural Architecture Incorporating Song Features For Music Recommendation

    Full text link
    Recommender Systems are an integral part of music sharing platforms. Often the aim of these systems is to increase the time, the user spends on the platform and hence having a high commercial value. The systems which aim at increasing the average time a user spends on the platform often need to recommend songs which the user might want to listen to next at each point in time. This is different from recommendation systems which try to predict the item which might be of interest to the user at some point in the user lifetime but not necessarily in the very near future. Prediction of the next song the user might like requires some kind of modeling of the user interests at the given point of time. Attentive neural networks have been exploiting the sequence in which the items were selected by the user to model the implicit short-term interests of the user for the task of next item prediction, however we feel that the features of the songs occurring in the sequence could also convey some important information about the short-term user interest which only the items cannot. In this direction, we propose a novel attentive neural architecture which in addition to the sequence of items selected by the user, uses the features of these items to better learn the user short-term preferences and recommend the next song to the user.Comment: Accepted as a paper at the 12th ACM Conference on Recommender Systems (RecSys 18
    • …
    corecore