274 research outputs found

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Learning Material-Aware Local Descriptors for 3D Shapes

    Full text link
    Material understanding is critical for design, geometric modeling, and analysis of functional objects. We enable material-aware 3D shape analysis by employing a projective convolutional neural network architecture to learn material- aware descriptors from view-based representations of 3D points for point-wise material classification or material- aware retrieval. Unfortunately, only a small fraction of shapes in 3D repositories are labeled with physical mate- rials, posing a challenge for learning methods. To address this challenge, we crowdsource a dataset of 3080 3D shapes with part-wise material labels. We focus on furniture models which exhibit interesting structure and material variabil- ity. In addition, we also contribute a high-quality expert- labeled benchmark of 115 shapes from Herman-Miller and IKEA for evaluation. We further apply a mesh-aware con- ditional random field, which incorporates rotational and reflective symmetries, to smooth our local material predic- tions across neighboring surface patches. We demonstrate the effectiveness of our learned descriptors for automatic texturing, material-aware retrieval, and physical simulation. The dataset and code will be publicly available.Comment: 3DV 201

    Interpretable deep learning for guided structure-property explorations in photovoltaics

    Full text link
    The performance of an organic photovoltaic device is intricately connected to its active layer morphology. This connection between the active layer and device performance is very expensive to evaluate, either experimentally or computationally. Hence, designing morphologies to achieve higher performances is non-trivial and often intractable. To solve this, we first introduce a deep convolutional neural network (CNN) architecture that can serve as a fast and robust surrogate for the complex structure-property map. Several tests were performed to gain trust in this trained model. Then, we utilize this fast framework to perform robust microstructural design to enhance device performance.Comment: Workshop on Machine Learning for Molecules and Materials (MLMM), Neural Information Processing Systems (NeurIPS) 2018, Montreal, Canad

    Image-based Artificial Intelligence empowered surrogate model and shape morpher for real-time blank shape optimisation in the hot stamping process

    Full text link
    As the complexity of modern manufacturing technologies increases, traditional trial-and-error design, which requires iterative and expensive simulations, becomes unreliable and time-consuming. This difficulty is especially significant for the design of hot-stamped safety-critical components, such as ultra-high-strength-steel (UHSS) B-pillars. To reduce design costs and ensure manufacturability, scalar-based Artificial-Intelligence-empowered surrogate modelling (SAISM) has been investigated and implemented, which can allow real-time manufacturability-constrained structural design optimisation. However, SAISM suffers from low accuracy and generalisability, and usually requires a high volume of training samples. To solve this problem, an image-based Artificial-intelligence-empowered surrogate modelling (IAISM) approach is developed in this research, in combination with an auto-decoder-based blank shape generator. The IAISM, which is based on a Mask-Res-SE-U-Net architecture, is trained to predict the full thinning field of the as-formed component given an arbitrary blank shape. Excellent prediction performance of IAISM is achieved with only 256 training samples, which indicates the small-data learning nature of engineering AI tasks using structured data representations. The trained auto-decoder, trained Mask-Res-SE-U-Net, and Adam optimiser are integrated to conduct blank optimisation by modifying the latent vector. The optimiser can rapidly find blank shapes that satisfy manufacturability criteria. As a high-accuracy and generalisable surrogate modelling and optimisation tool, the proposed pipeline is promising to be integrated into a full-chain digital twin to conduct real-time, multi-objective design optimisation.Comment: 32 pages, 11 figure

    Interpretable deep learning for guided microstructure-property explorations in photovoltaics

    Get PDF
    The microstructure determines the photovoltaic performance of a thin film organic semiconductor film. The relationship between microstructure and performance is usually highly non-linear and expensive to evaluate, thus making microstructure optimization challenging. Here, we show a data-driven approach for mapping the microstructure to photovoltaic performance using deep convolutional neural networks. We characterize this approach in terms of two critical metrics, its generalizability (has it learnt a reasonable map?), and its intepretability (can it produce meaningful microstructure characteristics that influence its prediction?). A surrogate model that exhibits these two features of generalizability and intepretability is particularly useful for subsequent design exploration. We illustrate this by using the surrogate model for both manual exploration (that verifies known domain insight) as well as automated microstructure optimization. We envision such approaches to be widely applicable to a wide variety of microstructure-sensitive design problems

    Surfel convolutional neural network for support detection in additive manufacturing

    Get PDF
    Support generation is one of the crucial steps in 3D printing to make sure the overhang structures can be fabricated. The first step of support generation is to detect which regions need support structures. Normal-based methods can determine the support regions fast but find many unnecessary locations which could be potentially self-supported. Image-based methods conduct a layer-by-layer comparison to find support regions, which could make use of material self-support capability; however, it sacrifices the computational cost and may still fail in some applications due to the loss of topology information when conducting offset and boolean operations based on the image. In order to overcome the difficulties of image-based methods, this paper proposes a surfel convolutional neural network (SCNN)-based approach for support detection. In this method, the sampling point on the surface with normal information, named surfel (surface element), is defined through layered depth-normal image (LDNI) sampling method. A local surfel image which represents the local topology information of the sampling point in the solid model is then constructed. A set of models with ground-truth support regions is used to train the deep neural network. Experimental results show that the proposed method outperforms the normal-based method and image-based method in terms of accuracy, reliability, and computational cost

    Optimisation of deep drawn corners subject to hot stamping constraints using a novel deep-learning-based platform

    Get PDF
    State-of-the-art hot stamping processes offer improved material formability and therefore have potential to successfully form challenging components. The feasibility of components to be formed through these processes is dependent on their geometric design and its complex interactions with the hot stamping environment. In industrial practice, trial-and-error approaches are currently used to update non-feasible designs where simulation runs are needed each time a design change is made. These approaches make the design process resource intensive and require considerable numerical and process expertise. To demonstrate a superior approach, this study presents a novel application of a deep-learning-based optimisation platform which adopts a non-parametric geometric modelling strategy. Here, deep drawn corner geometries from different geometry subclasses were optimised to minimise wasted volume due to radii while avoiding excessive post-stamping thinning. A neural network was trained to generate families of deep drawn corner geometries where each geometry was conditioned on an input latent vector. Another neural network was trained to predict the thinning distributions obtained from forming these geometries through a hot stamping process. Guided by these distributions, the latent vector, and therefore geometry, was iteratively updated by a new gradient-based optimisation technique. Overall, it is demonstrated that the platform is capable of optimising geometries, irrespective of complexity, subject to imposed post-stamped thinning constraints

    On the use of Artificial Neural Networks in Topology Optimisation

    Full text link
    The question of how methods from the field of artificial intelligence can help improve the conventional frameworks for topology optimisation has received increasing attention over the last few years. Motivated by the capabilities of neural networks in image analysis, different model-variations aimed at obtaining iteration-free topology optimisation have been proposed with varying success. Other works focused on speed-up through replacing expensive optimisers and state solvers, or reducing the design-space have been attempted, but have not yet received the same attention. The portfolio of articles presenting different applications has as such become extensive, but few real breakthroughs have yet been celebrated. An overall trend in the literature is the strong faith in the "magic" of artificial intelligence and thus misunderstandings about the capabilities of such methods. The aim of this article is therefore to present a critical review of the current state of research in this field. To this end, an overview of the different model-applications is presented, and efforts are made to identify reasons for the overall lack of convincing success. A thorough analysis identifies and differentiates between problematic and promising aspects of existing models. The resulting findings are used to detail recommendations believed to encourage avenues of potential scientific progress for further research within the field.Comment: 36 pages, 7 figures (13 figures counting sub-figures), accepted for publication in Structural and Multidisciplinary Optimizatio
    • …
    corecore