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Abstract. State-of-the-art hot stamping processes offer improved material formability and 

therefore have potential to successfully form challenging components. The feasibility of 

components to be formed through these processes is dependent on their geometric design and its 

complex interactions with the hot stamping environment. In industrial practice, trial-anderror 

approaches are currently used to update non-feasible designs where simulation runs are needed 

each time a design change is made. These approaches make the design process resource intensive 

and require considerable numerical and process expertise. To demonstrate a superior approach, 

this study presents a novel application of a deep-learning-based optimisation platform which 

adopts a non-parametric geometric modelling strategy. Here, deep drawn corner geometries from 

different geometry subclasses were optimised to minimise wasted volume due to radii while 

avoiding excessive post-stamping thinning. A neural network was trained to generate families of 

deep drawn corner geometries where each geometry was conditioned on an input latent vector. 

Another neural network was trained to predict the thinning distributions obtained from forming 

these geometries through a hot stamping process. Guided by these distributions, the latent vector, 

and therefore geometry, was iteratively updated by a new gradient-based optimisation technique. 

Overall, it is demonstrated that the platform is capable of optimising geometries, irrespective of 

complexity, subject to imposed post-stamped thinning constraints.   

1. Introduction  

Lightweighting is one of the most effective strategies to reduce vehicle use-phase emissions [1] and 

therefore address the ever-growing concerns surrounding global environmental impact [2]. The latest 

hot stamping processes (e.g., the HFQ® process for high strength aluminium alloys [3]) are key enablers 

for realising vehicle lightweighting. However, there are several inherent manufacturing complexities 

associated with these processes. These include uneven cooling during stamping [4] and viscoplastic 

effects on the material flow stress at elevated temperatures [5]. These complexities create unfamiliarity 

among industrial designers and constrain the space of feasible component designs.   

Published literature focuses on the development of advanced material models [5–8] that predict the 

material constitutive behaviour under hot stamping conditions. These models are then used to simulate 

hot stamping processes with high accuracy using Finite Element (FE) simulations [4]. However, these 

simulations usually take place late in design processes when the component geometry is near completion 

and require considerable numerical and process expertise.  

  

Content from this work may be used under the terms of theCreativeCommonsAttribution 3.0 licence. Any further 

distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 
Published under licence by IOP Publishing Ltd 

Recently, researchers have started exploring time-efficient alternatives to FE simulations for 

component feasibility assessment. For simple approximations of complex geometries, Attar et al. [9] 

developed guidelines for quickly identifying if a designed geometry is likely to fall within a forming 

process’s window of capability. For more complicated geometries with many geometric dimensions, 

non-parametric modelling representations offer a promising route. From the domain of machine learning, 
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researchers have explored using Convolutional Neural Networks (CNNs) as surrogate models of 

stamping processes. These models were able to rapidly predict post-stamping physical fields (e.g., 

thinning strain distribution) associated with a given die geometry as input [10–13]. Attar et al. [11] found 

that high accuracy in the predicted physical fields was achievable from CNNs when compared to FE 

simulations even for a complex hot stamping process.  

However, these promising surrogate models are only capable of forward predictions without any 

backward feedback or guidance towards optimum designs. To address this drawback, Attar et al. [14] 

developed a novel deep-learning-based optimisation platform for optimising geometries subject to 

manufacturing constraints. The optimisation platform featured the interactions of two neural networks: 

1) a geometry generator 𝑓𝜃1 and 2) a manufacturing performance evaluator 𝑔𝜃2. The geometry generator 

took advantage of recently developed implicit neural representations [15] but adapted for representing 

stamping geometries with high accuracy [14]. These representations made use of Signed Distance Fields 

(SDFs) which implicitly represent arbitrary geometries by their zero-level-sets and these geometries 

were extracted using Marching Cubes [16]. The manufacturing performance evaluator was a CNN-based 

surrogate model which used a 2D projection of the extracted geometries to predict their post-stamping 

physical fields. Manufacturing constraints were imposed based on these fields and were used to 

formulate objective functions to be minimised. The minimisation was performed by using the CNN-

predicted manufacturability information to iteratively update the geometries until convergence.   

The purpose of this paper is to present a novel engineering application of the aforementioned 

optimisation platform. This application offers practical guidance for researchers and industrial engineers 

who are planning to use the platform to develop geometries that are optimised for stamping applications.  

2. Development of the geometry generator model  

The procedures developed in [14] were employed here to establish a geometry generator model 𝑓𝜃1. The 

definition of the geometries considered are first given followed by model details.   

2.1. Geometry definition  

The high level geometry class considered in this study was quarter deep drawn box corners. These 

corners are widely adopted on many rectangular or square shaped components, e.g., door inners in [17], 

but are challenging to successfully form [9]. Within this geometry class, three different geometry 

subclasses were defined and parameterised individually. These were named standard corners, chamfer 

corners and stepped sidewalls and can be seen in Figure 1. Different subclasses were used to showcase 

the non-parametric capability of the optimisation platform, as presented later in the paper.  
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Figure 1. Definition of the three deep drawn 

box corner geometry subclasses considered 

in this study. Figure shows (a) 3D CAD 

views with corner parameters labelled and 

(b) section views with sidewall parameters 

labelled. Box half side length of 500 mm for 

all geometries.  

  

2.2. Data preparation  

The geometry generator model was trained to generate variants of die geometries from the geometry 

subclasses and this training process required example geometries. Using the CAD parameters shown in 

Figure 1, the Latin Hypercube design of experiments technique [18] and SolidWorks VBA was 

employed to generate these examples. For training data, a total of 1200 geometries were generated, 400 

from each subclass. For test data, 300 geometries were generated, 100 from each subclass.   

The generated geometries were then processed into a suitable form for neural network training. The 

top surface from each generated example die geometry was extracted in CAD software and exported as 

an STL surface mesh file, as shown in Figure 2(a). Each mesh was scaled such that the die edge was of 

unit length. The scaled meshes were then discretised into the point sets shown in Figure 2(b).  

Figure 2. Data preparation for the geometry generator model. (a) Die geometries for training and test set 

exported from CAD software as 

STL surface meshes with zero 

thickness and unit edge length. (b) 

Surface meshes were discretised 

into two point sets: off surface and 

surface points. Surface points also  

 had surface normal vectors. 𝜎 

denotes the standard deviation of 

zero mean Gaussian noise.  

  

2.3. Model architecture  

The architecture of the neural network model 𝑓𝜃1 used as the geometry generator is shown in Figure 3. 

This model was based on an Auto-Decoder multilayer perceptron, recently introduced by Park et al. 

[15]. The model took as input a latent vector 𝒛 ∈ ℝ128 which was concatenated with the coordinates of a 

3D query point in ambient space 𝒙 ∈ ℝ3. The output was a SDF value at the query point. Querying 𝑓𝜃1 

on a 3D grid of points enabled a volumetric SDF to be generated over that grid and this SDF was 

conditioned on the latent vector  𝒛. Changing 𝒛 during optimisation would change the generated SDF 

and therefore change the geometry implicitly represented by the zero-level-set of the SDF [15].  
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Figure 3. Architecture of the geometry generator neural network model 𝑓𝜃1. Numbers denote vector length.  

2.4. Training and inference  

The training process of the model shown in Figure 3 followed the developments presented in [14]. The 

model was trained to generate an SDF given only the 3D coordinates of input points. Ground truth SDF 

values were not needed, and the model was instead trained to obey the geometric properties of SDFs. 

Attar et al. [14] found that this approach resulted in networks that were capable of high accuracy 

reconstructions of small geometric features on stamping geometries (e.g., tight radii).  

To train the model in this way, a loss function to be minimised was formulated in terms of the network 

parameters 𝜃1 and the latent vectors for geometries in each training batch {𝒛𝑖}𝐵𝑖=1. This function is shown 

in Equation (1)  
 𝐵 𝐵 

arg training surface(𝜃1, 𝒛𝑖) + ℒoff surface(𝜃1, 𝒛𝑖) + ℒreg(𝒛𝑖)) (1)  

 𝜃   𝜃

where  

 ℒsurface (𝒛𝑖,𝒙𝑗) 𝛼𝑗 ‖𝛻𝒙𝑗𝑓𝜃1(𝒛𝑖, 𝒙𝑗) − 𝒏𝑗‖2)  (2)  

 
𝒙𝑗𝑷 

2 

 ℒoff surface(‖𝛻𝒙𝑘𝑓𝜃1(𝒛𝑖, 𝒙𝑘)‖2 − 1) 
 (3)  

𝒙𝑘 𝑸 

 ‖𝒛𝑖‖2  (4)  

A brief breakdown of Equation (1) is now given, and further details can be found in the original paper 

by Attar et al. [14]. The surface  term was formulated on the surface point set 𝑷 and contained two 

terms weighted by the scalars 𝜆  and 𝜆2 as shown in Equation (2). Minimising the first term encouraged 

the generated SDF value at the geometry surface 𝑓𝜃1(𝒛𝑖, 𝒙𝑗) to be zero, since SDFs should represent the 

surface geometry by their zero-level-sets [15]. Minimising the second term encouraged the spatial 

gradients of the generated SDF at the surface 𝛻𝒙𝑗𝑓𝜃1(𝒛𝑖,𝒙𝑗) to be aligned with the surface unit normal 

vectors 𝒏𝑗. This alignment of normals at the geometry surface is a geometric property of SDFs [14]. The 

𝛼𝑗 term gave a greater weighting to surface points belonging to tight geometry regions (e.g., tight radii) 

to encourage their accurate reconstruction.  

The ℒoff surface(𝜃1,𝒛𝑖) term weighted by 𝜆3 was formulated on the off surface point set 𝑸. Minimising 

this term encouraged the spatial gradient of the generated off surface SDF 𝛻𝒙𝑘𝑓𝜃1(𝒛𝑖, 𝒙𝑘) to have unit 

magnitude, which is another property of SDFs [14]. Minimising the ℒreg(𝒛𝑖) term weighted by 𝜆4 
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encouraged latent vector magnitudes that were concentred near the origin. This concentration enabled 

similar latent vectors for similar geometries and helped training convergence [15]. After training, high 

quality geometric reconstructions were enabled from 𝑓𝜃1 on unseen test set geometries.  

At inference time, the determined network parameters 𝜃1 were fixed and an optimum latent vector 

for an unseen geometry was inferred through an iterative optimisation procedure. This inference process 

involved minimising the expression shown in Equation (5) to obtain an optimal latent vector which best 

describes the unseen geometry.  

 arg min ℒinference  arg  |𝑷| 𝛼𝑗 ‖𝛻𝒙𝑗𝑓𝜃1(𝒛,𝒙𝑗) − 

𝒏𝑗‖2) 
 𝒛  𝒛  

𝒙𝑗 𝑷 

 𝜆2 (5)  

|𝑸|(‖𝛻𝒙𝑘𝑓𝜃1(𝒛,𝒙𝑘)‖2 − 1)+ 𝜆4‖𝒛‖2  

𝒙𝑘𝑸 

3. Development of the manufacturing performance evaluator model  

An overview of the manufacturing performance evaluator model 𝑔𝜃2 is presented and further details can 

be found by Attar et al. [11,12]. This model was a CNN based surrogate of the HFQ process [3] and was 

able to predict the post-stamped thinning distribution associated with an input die geometry.   

3.1. HFQ stamping simulations  

Simulations in PAM-STAMP were conducted to obtain target thinning distributions for the training and 

testing datasets of 𝑔𝜃2. The CAD geometries described in Section 2.1.  were converted into FE meshes 

for these simulations. The Python programming language was used to automate the loading of these 

meshes into PAM-STAMP and launch each simulation. The processing parameters were kept constant 

and set according to Attar et al. [14]. The temperature and strain rate dependent material model for 

AA6082 under HFQ conditions which was presented in [19] was used.  

3.2. Model architecture and training  

The Res-SE-U-Net architecture presented in Attar et al. [11,12] was used for 𝑔𝜃2 and an overview of the 

manufacturability assessment using this model is presented in Figure 4. Specific details on the 

architecture of Res-SE-U-Nets can be found in the cited literature [11,12].  

  
Figure 4. Overview of the manufacturing performance assessment approach. (a) 2D projection of 3D die geometry. 

(b) Thinning field prediction using CNN based surrogate model given the input height map.  

The training data for 𝑔𝜃2 consisted of input-target image examples like the one seen in Figure 4. For 

the input images, the 3D CAD geometries described in Section 2.1.  were projected onto images to obtain 

2D height maps. For the target images, the thinning distributions were first extracted from the HFQ 

stamping simulations and plotted onto the undeformed 2D blank nodes from the FE mesh. These 2D 

distributions were then linearly interpolated onto a uniform image grid.   
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1 ( 𝒛 ,  𝑿 ) 

𝑔𝜃2 was then trained in a supervised manner using the training data. Through an iterative optimisation 

process, the optimiser sought to find the combination of network parameters 𝜃2 such that the mean 

squared error (MSE) between target thinning distributions and network predictions was minimised. After 

training, high accuracy in thinning distribution predictions were seen from 𝑔𝜃2 on unseen test set 

geometries.  

4. Design optimisation  

The optimisation platform was setup after 𝑓𝜃1 and 𝑔𝜃2 were established. An overview of the setup of the 

platform is presented in this section as well as details on two optimisation tasks.  

4.1. Optimisation platform set up  

Figure 5 shows the optimisation platform overview. The platform is based on the interaction of 𝑓𝜃1 and 

𝑔𝜃2 and these networks are used to iteratively update the latent vector 𝒛 to minimise ℒtask.  

 

Figure 5. Optimisation platform overview. Padlocks on 𝑓𝜃1 and 𝑔𝜃2 denote fixed network parameters.  

ℒtask was a function designed to be minimised and consisted of the summation of an objective function 

ℒobjective and a constraint function ℒconstraint. These functions are task specific and were formulated based 

on the optimisation tasks considered in this study (see below). A forward pass through the platform 

occurred each optimisation iteration to compute ℒtask and update 𝒛, as shown by the red arrows in Figure 

5. 𝒛 was iteratively updated by the Adam optimiser [20] by using a variation of the simplified gradient 

descent shown in Equation (6) where the subscript 𝑖 denotes the 𝑖th optimisation iteration and 𝜂 is a 

constant.  

𝜕ℒtask 

 𝒛𝑖+1 = 𝒛𝑖 − 𝜂   (6)  

𝜕𝒛𝑖 

A backward pass occurred each iteration to compute 𝜕ℒtask⁄𝜕𝒛 which was needed to perform the 𝒛 

updates as shown by the blue arrows in Figure 5. The chain rule was used to compute 𝜕ℒtask⁄𝜕𝒛 as shown 

in Equation (7). Details on the computation of these gradients are given by Attar et al. [14].  

 𝜕 𝑡𝑎𝑠𝑘 𝜕 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝜕 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝜕𝑴 𝜕𝑰 𝜕𝑽 𝜕𝑓𝜃 

    (7)  

 𝜕𝒛 𝜕𝑽 𝜕𝑴 𝜕𝑰 𝜕𝑽 𝜕𝑓𝜃  𝜕𝒛 
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4.2. Optimisation tasks  

Two optimisation tasks were performed using the optimisation platform, one for a standard corner 

geometry and another for a stepped sidewall geometry. These tasks both involved optimising an initial 

geometry to minimise the wasted volume due to corner geometric features. Ideal geometries which have 

zero wasted volume would have infinitely sharp corners as shown in Figure 6. However, these 

geometries would impose large thinning defects and fractures during stamping [9]. To form these 

geometries successfully, their corner features must 

be carefully designed and optimised.   

Figure 6. Ideal geometries for the optimisation 

tasks in this study. (a) Task 1 ideal geometry: Standard 

corner with no radii. (b) Task 2 ideal geometry: Stepped 

sidewall with no radii.  Dimensions in mm.  

The objective function ℒobjective and the constraint function ℒconstraint were first formulated for this 

optimisation problem. The formulation for objective is shown in Equation (8)  

 ℒobjective  𝜆  ‖𝒙𝑖

 |𝐻  𝐻ref|  (8)  

𝑅 𝒙𝑖 𝐼 𝒙𝑗 𝑅 

where the bracketed term is the chamfer distance between point sets sampled from the ideal geometry 

𝑷𝐼 and the reconstructed geometry which is being optimised 𝑷𝑅. These point sets are illustrated in Figure 

7. A generous 30,000 points were sampled to approximate continuous surfaces. It is noteworthy that the 

generation of 𝑃𝑅 occurred at each optimisation iteration and had to be done in a differentiable way to 

allow for 𝜕ℒ𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒⁄𝜕𝑽 to be computed for Equation (7). In practice, the differentiable point sampler 

from the Pytorch3D framework was used for this purpose [21]. Weighting the chamfer distance by the 

scalar 𝜆1 formed the chamfer loss. Minimising the chamfer loss encouraged the geometry being 

optimised to be as close as possible to its idealised counterpart in Figure 6.  

Figure 7. Illustration of point sets 

sampled from ideal geometry 𝑷𝐼 and 

from the reconstructed geometry 

which is being optimised 𝑷𝑅. These 

sets were used to compute the  
chamfer loss in Equation (8).  

The second term in Equation (8) weighted by the scalar 𝜆2 was the height loss. Minimising this loss 

encouraged the height of the geometry being optimised 𝐻 to be as close as possible to a desired reference 

height 𝐻ref. Therefore, this loss ensured that where possible, optimisation of corner geometries were 

favoured over height. Here, 𝐻ref = 110 mm as shown in Figure 6.  

The formulation for ℒconstraint is shown in Equation (9)  

 ℒconstraint = 𝜆3ReLU(max(𝑴(𝒛)) − 𝑡max)  (9)  

where 𝜆3 is a weighting scalar, 𝑴(𝒛) is the generated post-stamping thinning field defined as  

 𝑴(𝒛) = 𝑔𝜃2 (𝜙 (𝑓𝜃1(𝒛, 𝑿)))  (10)  

where 𝜙 is the combined marching cubes [16] and differentiable rasteriser [21] steps in Figure 5. Here, 

𝜙 can be thought of as a differentiable function that converts the volumetric SDF 𝑓𝜃1(𝒛,𝑿) into a 2D 

height map of the geometry encoded in 𝒛. The non-differentiability of marching cubes [22] has recently 



   

  
International Deep-Drawing Research Group Conference (IDDRG 2022) IOP Publishing 

  
IOP Conf. Series: Materials Science and Engineering 1238 (2022) 012066 doi:10.1088/1757-899X/1238/1/012066 

   

8 

been addressed by Remelli et al. [23,24] and applied by Attar et al. [14]. The function ReLU
 was used in Equation (9) to make ℒconstraint inactive when the maximum thinning 

 did not exceed a maximum allowable thinning constraint 𝑡max and active otherwise.  

4.2.1.  Task 1 description and results. Task 1 was to optimise the initial chamfer corner geometry shown 

in Figure 8(b)(top). The objective of task 1 was to modify this geometry so that it is as close as possible 

to the ideal geometry shown in Figure 6(a) but subject to a 0.1 max thinning constraint. The results are 

shown in Figure 8.   

  
Figure 8. Optimisation task 1 results.  

4.2.2.  Task 2 description and results. Task 2 was to optimise the initial shallow standard corner geometry 

shown in Figure 9(b)(top). This shallow geometry could be, for example, one that might have been 

previously designed for a standard cold stamping process. Therefore, this task could be interpreted as 

optimising this geometry to take advantage of hot stamping capabilities that enable challenging features 

such as stepped sidewalls, tight radii and large draw depths [5,9]. The objective of task 2 was to modify 

this geometry so that it is as close as possible to the ideal geometry shown in Figure 6(b) but subject to 

a 0.2 max thinning constraint. The results are shown in Figure 9.  
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Figure 9. Optimisation task 2 results.  

4.2.3.  Discussion. The results for both tasks showed that expressive changes in geometries are possible. 

The optimisation history of task 1 is plotted on Figure 8(a). The maximum thinning was seen to decrease 

from 0.18 to 0.1 through the first 173 iterations and this decrease was mainly due to a reduction in 

geometry height as seen in Figure 8(b). At iteration 173, the constraint became inactive.  

This formulation of Equation (9) prevented the constraint from becoming active again, as further 

explained by Attar et al. [14]. The remainder of the optimisation process was driven by minimising 

Equation (8). Any further geometric changes after iteration 173 occurred under constant maximum 

thinning at the constraint level. The final geometry at iteration 3000 was as close as possible to the ideal 

geometry in Figure 6(a) but with optimised corner features. The height loss in Equation (8) enabled the 

desired 110 mm height to be achieved but at the cost of larger radii.   

An opposite scenario was seen for task 2. Figure 9(a) shows that the initial geometry had a maximum 

thinning of around 0.06 which was overly conservative since the allowable was set at 0.2. In this case, 

both the chamfer loss and the height loss proceeded to decrease with no manufacturing constraint since 

the constraint function in Equation (9) was inactive. Consequently, from iterations 0 to 164, height was 

increasing, the stepped feature was being introduced, and all radii were getting tighter. These changes 

resulted in increases in the maximum thinning which reached a maxima at iteration 164 but went back 

down to 0.2 shortly after. The final geometry at iteration 500 was as close as possible to the ideal 

geometry in Figure 6(b) but with optimised corner and stepped sidewall features.  

The optimisation tasks were repeated with different constraint levels and the optimum geometries are 

shown in Figure 10. Noticeably tighter optimised corners can be seen when increasing maximum 

thinning constraint levels. At the strictest constraint level of 0.05, shallower geometries were obtained 

with larger radii and with no stepped feature for task 2. These results communicate understanding of 

feasible designs and design capabilities of a particular stamping process to industrial designers.   
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Figure 10. Optimum geometries from task 1 (top row) and task 2 (bottom row) for various maximum allowable 

thinning constraint values.  

5. Conclusion  

A novel application of a deep-learning-based platform for optimising sheet stamping geometries subject 

to manufacturing constraints was presented. Manufacturability-constrained optimisation of deep drawn 

corner geometries was performed to minimise wasted volume due to designed radii. Training details for 

two neural networks needed for the platform were given and these networks enabled non-parametric 

modelling and evaluation of sheet stamping geometries. The first network generated geometries and the 

second evaluated their manufacturing performance. New objective and constraint functions were 

formulated, and optimisation was performed by minimising these functions. It was demonstrated that 

expressive changes to geometries are possible using the optimisation platform. These changes were 

driven by achieving close to target designs while satisfying manufacturability and were irrespective of 

geometric complexity due to the deep-learning-based nonparametric approach. The presented 

application offers practical guidance for researchers and engineers who are planning to use the platform 

to develop optimum geometries for stamping processes.  Acknowledgments  
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