1,809 research outputs found

    A Decomposition Theorem for Maximum Weight Bipartite Matchings

    Get PDF
    Let G be a bipartite graph with positive integer weights on the edges and without isolated nodes. Let n, N and W be the node count, the largest edge weight and the total weight of G. Let k(x,y) be log(x)/log(x^2/y). We present a new decomposition theorem for maximum weight bipartite matchings and use it to design an O(sqrt(n)W/k(n,W/N))-time algorithm for computing a maximum weight matching of G. This algorithm bridges a long-standing gap between the best known time complexity of computing a maximum weight matching and that of computing a maximum cardinality matching. Given G and a maximum weight matching of G, we can further compute the weight of a maximum weight matching of G-{u} for all nodes u in O(W) time.Comment: The journal version will appear in SIAM Journal on Computing. The conference version appeared in ESA 199

    Counting Popular Matchings in House Allocation Problems

    Full text link
    We study the problem of counting the number of popular matchings in a given instance. A popular matching instance consists of agents A and houses H, where each agent ranks a subset of houses according to their preferences. A matching is an assignment of agents to houses. A matching M is more popular than matching M' if the number of agents that prefer M to M' is more than the number of people that prefer M' to M. A matching M is called popular if there exists no matching more popular than M. McDermid and Irving gave a poly-time algorithm for counting the number of popular matchings when the preference lists are strictly ordered. We first consider the case of ties in preference lists. Nasre proved that the problem of counting the number of popular matching is #P-hard when there are ties. We give an FPRAS for this problem. We then consider the popular matching problem where preference lists are strictly ordered but each house has a capacity associated with it. We give a switching graph characterization of popular matchings in this case. Such characterizations were studied earlier for the case of strictly ordered preference lists (McDermid and Irving) and for preference lists with ties (Nasre). We use our characterization to prove that counting popular matchings in capacitated case is #P-hard

    An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings

    Full text link
    A widely used method for determining the similarity of two labeled trees is to compute a maximum agreement subtree of the two trees. Previous work on this similarity measure is only concerned with the comparison of labeled trees of two special kinds, namely, uniformly labeled trees (i.e., trees with all their nodes labeled by the same symbol) and evolutionary trees (i.e., leaf-labeled trees with distinct symbols for distinct leaves). This paper presents an algorithm for comparing trees that are labeled in an arbitrary manner. In addition to this generality, this algorithm is faster than the previous algorithms. Another contribution of this paper is on maximum weight bipartite matchings. We show how to speed up the best known matching algorithms when the input graphs are node-unbalanced or weight-unbalanced. Based on these enhancements, we obtain an efficient algorithm for a new matching problem called the hierarchical bipartite matching problem, which is at the core of our maximum agreement subtree algorithm.Comment: To appear in Journal of Algorithm

    Tight upper bound on the maximum anti-forcing numbers of graphs

    Full text link
    Let GG be a simple graph with a perfect matching. Deng and Zhang showed that the maximum anti-forcing number of GG is no more than the cyclomatic number. In this paper, we get a novel upper bound on the maximum anti-forcing number of GG and investigate the extremal graphs. If GG has a perfect matching MM whose anti-forcing number attains this upper bound, then we say GG is an extremal graph and MM is a nice perfect matching. We obtain an equivalent condition for the nice perfect matchings of GG and establish a one-to-one correspondence between the nice perfect matchings and the edge-involutions of GG, which are the automorphisms α\alpha of order two such that vv and α(v)\alpha(v) are adjacent for every vertex vv. We demonstrate that all extremal graphs can be constructed from K2K_2 by implementing two expansion operations, and GG is extremal if and only if one factor in a Cartesian decomposition of GG is extremal. As examples, we have that all perfect matchings of the complete graph K2nK_{2n} and the complete bipartite graph Kn,nK_{n, n} are nice. Also we show that the hypercube QnQ_n, the folded hypercube FQnFQ_n (n≥4n\geq4) and the enhanced hypercube Qn,kQ_{n, k} (0≤k≤n−40\leq k\leq n-4) have exactly nn, n+1n+1 and n+1n+1 nice perfect matchings respectively.Comment: 15 pages, 7 figure

    NC Algorithms for Computing a Perfect Matching and a Maximum Flow in One-Crossing-Minor-Free Graphs

    Full text link
    In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3K_{3,3}-minor-free graphs by building on Kasteleyn's scheme for planar graphs, and stated that this "opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3K_{3,3}-free graphs." In this paper, we finally settle this 30-year-old open problem. Building on recent NC algorithms for planar and bounded-genus perfect matching by Anari and Vazirani and later by Sankowski, we obtain NC algorithms for perfect matching in any minor-closed graph family that forbids a one-crossing graph. This family includes several well-studied graph families including the K3,3K_{3,3}-minor-free graphs and K5K_5-minor-free graphs. Graphs in these families not only have unbounded genus, but can have genus as high as O(n)O(n). Our method applies as well to several other problems related to perfect matching. In particular, we obtain NC algorithms for the following problems in any family of graphs (or networks) with a one-crossing forbidden minor: ∙\bullet Determining whether a given graph has a perfect matching and if so, finding one. ∙\bullet Finding a minimum weight perfect matching in the graph, assuming that the edge weights are polynomially bounded. ∙\bullet Finding a maximum stst-flow in the network, with arbitrary capacities. The main new idea enabling our results is the definition and use of matching-mimicking networks, small replacement networks that behave the same, with respect to matching problems involving a fixed set of terminals, as the larger network they replace.Comment: 21 pages, 6 figure
    • …
    corecore