24 research outputs found

    A Decomposition Algorithm to Solve the Multi-Hop Peer-to-Peer Ride-Matching Problem

    Full text link
    In this paper, we mathematically model the multi-hop Peer-to-Peer (P2P) ride-matching problem as a binary program. We formulate this problem as a many-to-many problem in which a rider can travel by transferring between multiple drivers, and a driver can carry multiple riders. We propose a pre-processing procedure to reduce the size of the problem, and devise a decomposition algorithm to solve the original ride-matching problem to optimality by means of solving multiple smaller problems. We conduct extensive numerical experiments to demonstrate the computational efficiency of the proposed algorithm and show its practical applicability to reasonably-sized dynamic ride-matching contexts. Finally, in the interest of even lower solution times, we propose heuristic solution methods, and investigate the trade-offs between solution time and accuracy

    Large-Scale Dynamic Ridesharing with Iterative Assignment

    Full text link
    Transportation network companies (TNCs) have become a highly utilized transportation mode over the past years. At their emergence, TNCs were serving ride requests one by one. However, the economic and environmental benefits of ridesharing encourages them to dynamically pool multiple ride requests to enable people to share vehicles. In a dynamic ridesharing (DRS) system, a fleet operator seeks to minimize the overall travel cost while a rider desires to experience a faster (and cheaper) service. While the DRS may provide relatively cheaper trips by pooling requests, the service speed is contingent on the objective of the vehicle-to-rider assignments. Moreover, the operator must quickly assign a vehicle to requests to prevent customer loss. In this study we develop an iterative assignment (IA) algorithm with a balanced objective to conduct assignments quickly. A greedy algorithm from the literature is also tailored to further reduce the computational time. The IA was used to measure the impact on service quality of fleet size; assignment frequency; the weight control parameter of the two objectives on vehicle occupancy -- rider wait time and vehicle hours traveled. A case study in Austin, TX, reveals that the key performance metrics are the most sensitive to the weight parameter in the objective function

    A bilevel approach for compensation and routing decisions in last-mile delivery

    Full text link
    In last-mile delivery logistics, peer-to-peer logistic platforms play an important role in connecting senders, customers, and independent carriers to fulfill delivery requests. Since the carriers are not under the platform's control, the platform has to anticipate their reactions, while deciding how to allocate the delivery operations. Indeed, carriers' decisions largely affect the platform's revenue. In this paper, we model this problem using bilevel programming. At the upper level, the platform decides how to assign the orders to the carriers; at the lower level, each carrier solves a profitable tour problem to determine which offered requests to accept, based on her own profit maximization. Possibly, the platform can influence carriers' decisions by determining also the compensation paid for each accepted request. The two considered settings result in two different formulations: the bilevel profitable tour problem with fixed compensation margins and with margin decisions, respectively. For each of them, we propose single-level reformulations and alternative formulations where the lower-level routing variables are projected out. A branch-and-cut algorithm is proposed to solve the bilevel models, with a tailored warm-start heuristic used to speed up the solution process. Extensive computational tests are performed to compare the proposed formulations and analyze solution characteristics

    A passenger-to-driver matching model for commuter carpooling: Case study and sensitivity analysis

    Get PDF
    For the transport sector, promoting carpooling to private car users could be an effective strategy over reducing vehicle kilometers traveled. Theoretical studies have verified that carpooling is not only beneficial to drivers and passengers but also to the environment. Nevertheless, despite carpooling having a huge potential market in car commuters, it is not widely used in practice worldwide. In this paper, we develop a passenger-to-driver matching model based on the characteristics of a private-car based carpooling service, and propose an estimation method for time-based costs as well as the psychological costs of carpooling trips, taking into account the potential motivations and preferences of potential carpoolers. We test the model using commuting data for the Greater London from the UK Census 2011 and travel-time data from Uber. We investigate the service sensitivity to varying carpooling participant rates and fee-sharing ratios with the aim of improving matching performance at least cost. Finally, to illustrate how our matching model might be used, we test some practical carpooling promotion instruments. We found that higher participant role flexibility in the system can improve matching performance significantly. Encouraging commuters to walk helps form more carpooling trips and further reduces carbon emissions. Different fee-sharing ratios can influence matching performance, hence determination of optimal pricing should be based on the specific matching model and its cost parameters. Disincentives like parking charges and congestion charges seem to have a greater effect on carpooling choice than incentives like preferential parking and subsidies. The proposed model and associated findings provide valuable insights for designing an effective matching system and incentive scheme for carpooling services in practice
    corecore