8,692 research outputs found

    A Decomposition Algorithm for Nested Resource Allocation Problems

    Full text link
    We propose an exact polynomial algorithm for a resource allocation problem with convex costs and constraints on partial sums of resource consumptions, in the presence of either continuous or integer variables. No assumption of strict convexity or differentiability is needed. The method solves a hierarchy of resource allocation subproblems, whose solutions are used to convert constraints on sums of resources into bounds for separate variables at higher levels. The resulting time complexity for the integer problem is O(nlogmlog(B/n))O(n \log m \log (B/n)), and the complexity of obtaining an ϵ\epsilon-approximate solution for the continuous case is O(nlogmlog(B/ϵ))O(n \log m \log (B/\epsilon)), nn being the number of variables, mm the number of ascending constraints (such that m<nm < n), ϵ\epsilon a desired precision, and BB the total resource. This algorithm attains the best-known complexity when m=nm = n, and improves it when logm=o(logn)\log m = o(\log n). Extensive experimental analyses are conducted with four recent algorithms on various continuous problems issued from theory and practice. The proposed method achieves a higher performance than previous algorithms, addressing all problems with up to one million variables in less than one minute on a modern computer.Comment: Working Paper -- MIT, 23 page

    Advanced Column Generation Decompositions for Optimizing Provisioning Problems in Optical Networks

    Get PDF
    With the continued growth of Internet traffic, and the scarcity of the optical spectrum, there is a continuous need to optimize the usage of this resource. In the process of provisioning optical networks, telecommunication operators must deal with combinatorial optimization problems that are NP-complete. One of these problems is the Routing and Wavelength Allocation (RWA) which considers the fixed frequency grid, and the Routing and Spectrum Allocation (RSA) which is defined for the flexible frequency grid. While the flexible frequency grid paradigm attempted to improve the spectrum usage, the RSA problem has an additional spectrum dimension that makes it harder than the RWA problem. In this thesis, in continuation of the previous studies, and using the advanced techniques of Integer Linear Programing, we propose a Column Generation algorithm based on a Lightpath decomposition which we implement for both the RWA and the RSA problems. This algorithm proved to be the most efficient so far producing optimal or near optimal solutions, and improving the computation times by two orders of magnitude on average. This algorithm is based on the approach of finding the right decomposition scheme as to be able to solve the Pricing Problem in a polynomial time. This approach can be used in other optimization problems. In addition, we consider the same Configuration decomposition as the previous studies, and we propose an algorithm based on Nested Column Generation. We implemented this algorithm for both the RSA and the RWA problems, which led to a considerable improvement on the previous algorithms that use the same Configuration decomposition. This Nested Column Generation approach can be adopted in other optimization problems

    Separable Convex Optimization with Nested Lower and Upper Constraints

    Full text link
    We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments to generate valid bounds from the recursive calls, and eliminate linking constraints based on the information from sub-problems. This algorithm does not need strict convexity or differentiability. It produces an ϵ\epsilon-approximate solution for the continuous problem in O(nlogmlognBϵ)\mathcal{O}(n \log m \log \frac{n B}{\epsilon}) time and an integer solution in O(nlogmlogB)\mathcal{O}(n \log m \log B) time, where nn is the number of decision variables, mm is the number of constraints, and BB is the resource bound. A complexity of O(nlogm)\mathcal{O}(n \log m) is also achieved for the linear and quadratic cases. These are the best complexities known to date for this important problem class. Our experimental analyses confirm the good performance of the method, which produces optimal solutions for problems with up to 1,000,000 variables in a few seconds. Promising applications to the support vector ordinal regression problem are also investigated

    Reallocation Problems in Scheduling

    Full text link
    In traditional on-line problems, such as scheduling, requests arrive over time, demanding available resources. As each request arrives, some resources may have to be irrevocably committed to servicing that request. In many situations, however, it may be possible or even necessary to reallocate previously allocated resources in order to satisfy a new request. This reallocation has a cost. This paper shows how to service the requests while minimizing the reallocation cost. We focus on the classic problem of scheduling jobs on a multiprocessor system. Each unit-size job has a time window in which it can be executed. Jobs are dynamically added and removed from the system. We provide an algorithm that maintains a valid schedule, as long as a sufficiently feasible schedule exists. The algorithm reschedules only a total number of O(min{log^* n, log^* Delta}) jobs for each job that is inserted or deleted from the system, where n is the number of active jobs and Delta is the size of the largest window.Comment: 9 oages, 1 table; extended abstract version to appear in SPAA 201

    Overview of Constrained PARAFAC Models

    Get PDF
    In this paper, we present an overview of constrained PARAFAC models where the constraints model linear dependencies among columns of the factor matrices of the tensor decomposition, or alternatively, the pattern of interactions between different modes of the tensor which are captured by the equivalent core tensor. Some tensor prerequisites with a particular emphasis on mode combination using Kronecker products of canonical vectors that makes easier matricization operations, are first introduced. This Kronecker product based approach is also formulated in terms of the index notation, which provides an original and concise formalism for both matricizing tensors and writing tensor models. Then, after a brief reminder of PARAFAC and Tucker models, two families of constrained tensor models, the co-called PARALIND/CONFAC and PARATUCK models, are described in a unified framework, for NthN^{th} order tensors. New tensor models, called nested Tucker models and block PARALIND/CONFAC models, are also introduced. A link between PARATUCK models and constrained PARAFAC models is then established. Finally, new uniqueness properties of PARATUCK models are deduced from sufficient conditions for essential uniqueness of their associated constrained PARAFAC models

    On a reduction for a class of resource allocation problems

    Full text link
    In the resource allocation problem (RAP), the goal is to divide a given amount of resource over a set of activities while minimizing the cost of this allocation and possibly satisfying constraints on allocations to subsets of the activities. Most solution approaches for the RAP and its extensions allow each activity to have its own cost function. However, in many applications, often the structure of the objective function is the same for each activity and the difference between the cost functions lies in different parameter choices such as, e.g., the multiplicative factors. In this article, we introduce a new class of objective functions that captures the majority of the objectives occurring in studied applications. These objectives are characterized by a shared structure of the cost function depending on two input parameters. We show that, given the two input parameters, there exists a solution to the RAP that is optimal for any choice of the shared structure. As a consequence, this problem reduces to the quadratic RAP, making available the vast amount of solution approaches and algorithms for the latter problem. We show the impact of our reduction result on several applications and, in particular, we improve the best known worst-case complexity bound of two important problems in vessel routing and processor scheduling from O(n2)O(n^2) to O(nlogn)O(n \log n)
    corecore