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Abstract

Advanced Column Generation Decompositions for Optimizing Provisioning Problems in
Optical Networks

Julian Enoch

With the continued growth of Internet traffic, and the scarcity of the optical spectrum, there is

a continuous need to optimize the usage of this resource. In the process of provisioning optical

networks, telecommunication operators must deal with combinatorial optimization problems that

are NP-complete. One of these problems is the Routing and Wavelength Allocation (RWA) which

considers the fixed frequency grid, and the Routing and Spectrum Allocation (RSA) which is defined

for the flexible frequency grid. While the flexible frequency grid paradigm attempted to improve

the spectrum usage, the RSA problem has an additional spectrum dimension that makes it harder

than the RWA problem.

In this thesis, in continuation of the previous studies, and using the advanced techniques of

Integer Linear Programing, we propose a Column Generation algorithm based on a Lightpath de-

composition which we implement for both the RWA and the RSA problems. This algorithm proved

to be the most efficient so far producing optimal or near optimal solutions, and improving the com-

putation times by two orders of magnitude on average. This algorithm is based on the approach of

finding the right decomposition scheme as to be able to solve the Pricing Problem in a polynomial

time. This approach can be used in other optimization problems.

In addition, we consider the same Configuration decomposition as the previous studies, and we

propose an algorithm based on Nested Column Generation. We implemented this algorithm for both

the RSA and the RWA problems, which led to a considerable improvement on the previous algo-

rithms that use the same Configuration decomposition. This Nested Column Generation approach

can be adopted in other optimization problems.
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Chapter 1

Introduction

1.1 Motivation

According to the latest report of Cisco [2017], the annual global IP traffic in 2016 was 1.2 Zetta-

Byte, and is expected to increase threefold by 2021. This growth is driven in a large proportion by

the IP video traffic which would account for 82% of all IP traffic by then. In particular, applications

such as Live Internet video, Virtual Reality, Internet gaming will contribute for the largest growth

portion. This continuous growth in the demand translates into a continuous need to enhance the

design and the engineering of the networking infrastructure and technologies.

The core networks of Internet (called also long-haul networks) are based on optical technology

and their links are made of optical fibers. These long-haul networks cover in general entire conti-

nents and their links span hundreds if not thousands of kilometers. As a way to increase the capacity,

these networks implement Wavelength Division Multiplexing (WDM), where the idea is to trans-

mit data simultaneously at multiple carrier wavelengths (or, equivalently, frequencies) over a fiber.

Traditionally, the multiplexing was done according to a Coarse WDM frequency grid (called fixed

grid) where the carrier wavelength granularity is 50 GHz. As of 2012, the International Telecom-

munication Union issued a new recommendation that defines a flexible Dense WDM frequency grid

(flexible grid for short) with a finer frequency granularity of 12.5 GHz called a frequency slot [IUT,

2012]. This evolution has allowed the emergence of Elastic Optical Networks.
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The main phase in the process of designing an optical network is concerned with traffic provi-

sioning. In all instances, traffic provisioning consists of assigning a routing path, and allocating a

frequency range to each traffic demand. In the case of fixed grid, the frequency range corresponds

to a wavelength. In this case, the provisioning problem is called the Routing and Wavelength Al-

location problem. In the case of flexible grid, the frequency range corresponds to a number of

contiguous frequency slots. In this case, the provisioning problem is called the Routing and Spec-

trum Allocation problem.

1.2 Objectives and contributions

Although the flexible grid was introduced to allow a more economic use of the optical resources,

the fixed grid remains in use in a lot of optical networks for many reasons such as the low cost of the

optical devices and the simplicity of the engineering algorithms. Hence, this thesis discusses both

RWA and RSA problems.

Among the existing algorithms for these problems, heuristics are in general fast but they do not

provide any guarantee on the quality of the solutions. On the other hand, exact algorithms do not

scale well, and are usually used on small network instances.

Our objective is to propose exact algorithms with better scalability than the existing ones, as to

allow the resolution of real-life network instances. In doing so, we use a large scale optimization

technique called Column Generation. While using RWA and RSA as study cases, we explore the

possibility to maximize the potential of Column Generation by finding the ideal decomposition of

these problems. In doing so, we designed two algorithms:

(1) The first algorithm employs a Lightpath decomposition combined with a Column Generation

scheme

(2) The second algorithm employs a Configuration decomposition combined with a Nested Col-

umn Generation scheme

Throughout this document, we use the following acronyms to refer to different algorithms:
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• L_CG refers to a Column Generation algorithm using a Lightpath decomposition introduced

in this thesis for both RWA and RSA;

• C_NCG refers to a Nested Column Generation algorithm using a Configuration decomposi-

tion introduced in this thesis for RSA;

• W_NCG refers to a Nested Column Generation algorithm using a Configuration decomposi-

tion introduced in this thesis for RWA;

• C_CG refers to a Column Generation algorithm using a Configuration decomposition intro-

duced by Jaumard and Daryalal [2016] for RSA;

• W_CG refers to a Column Generation algorithm using a wavelength Configuration decom-

position introduced by Jaumard and Daryalal [2017] for RWA;

All the implementations were coded in Java and the Branch-and-Bound part was done using

CPLEX. Shortest path calculation was done with an open-source Java library JGraphT implementing

Dijkstra’s algorithm. The results were produced on a 3.6-4.0 GHz 4-core machine with 32 GB of

memory.

We were able to publish part of our work, and we are in the process of publishing the remaining

part. Therefore in Chapter 2, we present the paper [Enoch and Jaumard, 2018a] which uses a Light-

path decomposition to solve the RWA problem. Chapter 3 presents the paper [Enoch and Jaumard,

2018b] which uses a similar decomposition applied to the RSA problem. Chapter 4 introduces the

more advanced Nested Column Generation approach applied to the RWA problem. Chapter 5 shows

the results obtained when applying Nested Column Generation to the RSA problem.

Next, we factored out the literature review of the two optimization problems discussed in this

thesis.
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1.3 Literature Review

1.3.1 Routing and Wavelength Assignment

While we are interested in the so-called max RWA problem in this study, many studies consider

the min RWA. In the max RWA problem, the objective is to maximize the number of granted re-

quests, i.e., it corresponds to a provisioning problem. On the other hand, in the min RWA problem,

the objective is to minimize the number of required wavelengths in order to grant all the requests,

hence it corresponds to a dimensioning problem.

The max RWA problem has been extensively studied in various flavours. In order to set the

stage for the present work, we provide the key references on the past works that have studied the

RWA problem with the objective to maximize the GoS, using Integer Linear Programming, in an

attempt to solve it exactly, or nearly exactly with an estimate of the accuracy. We also provide few

references related to the min RWA as it is a very similar problem.

The first class of studies used link based models. Such models are considered to be compact for

they have a polynomial number of variables and constraints. Yet, none of them is scalable for large

network instances. Jaumard et al. [2007] provide an extensive review of the different proposed link

models.

The second class of studies considered path based models, see, e.g., [Saad and Luo, 2002].

Therein, the authors used a Lagrangian decomposition to show that the LP relaxation can be solved

in polynomial time, but the ILP itself was solved using a pre-computed subset of paths, which

makes the model, and therefore the algorithm non-exact. Other path formulations were explored in

the context of the min RWA problem, see, e.g., [Christodoulopoulos et al., 2010; Liu and Rouskas,

2012].

The need for scalable and exact ILP models triggered the introduction of advanced models

that can make use of decomposition techniques. While providing a review of the existing CG

algorithms, Jaumard et al. [2009] hinted to an exact column generation (CG) model and CG-ILP

algorithm with a polynomial-time pricing problem (i.e., generator of lightpaths). However, the

authors refrained from pursuing this direction, arguing that it suffers from a wavelength symmetry

issue and an optimal LP relaxation that is not better than the one of the link formulations. Indeed,
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an integer linear program (ILP) is symmetric if its variables can be permuted without changing the

structure of the problem. Symmetry is usually viewed as the prelude of great difficulties for solving

exactly an ILP with traditional branch-and-bound, branch-and-cut or branch-and-price algorithms

[Margot, 2010]. Still, we decided to revisit the lightpath decomposition model following its good

performances for the RSA problem [Enoch and Jaumard, 2018b].

In the prospect of improving the characteristics of the path model, many studies considered new

ILP formulations with coarse variables, where each variable is associated with wavelength Con-

figuration, i.e., a set of lightpaths all routed with the same wavelength. This led to the so-called

Independent Set (IS) (also called Independent Routing Configuration decomposition (IRC)) mod-

els, using an underlying graph in which each node is associated with a path, and two nodes are

connected if their associated paths share a link. Finding a wavelength Configuration is equivalent

to identifying an independent set (also called stable set). Ramaswami and Sivarajan [1995] intro-

duced a first Independent Set (IS) model and solved its linear relaxation to obtain an upper bound

while explicitly enumerating the exponential number of variables. Lee et al. [2000] introduced a

slightly more compact model than Ramaswami and Sivarajan [1995], resulting in the so-called In-

dependent Routing Configuration decomposition model and solved it using a column generation

algorithm where the pricing problem is written as a weighted independent set problem, with an ex-

ponential number of variables. Two years later, Lee et al. [2002] proposed to solve the same pricing

problem using an embedded branch-and-price technique, which is quite computationally expensive.

Jaumard et al. [2009] then proposed to model the pricing problem as a multi-flow problem using a

link formulation, thus overcoming the issue of the exponential number of variables in the pricing

problem. More recently, Jaumard and Daryalal [2017] improved the scalability of Jaumard et al.

[2009] combining the link formulation of the pricing problem with a path one in order to speed up

the generation of wavelength Configurations. The resulting algorithm is able to solve efficiently

data instances with up to 90 nodes (ATT network) and up to 150 wavelengths (USA, Germany and

NTT networks).

While it was proved by Jaumard et al. [2009] that a wavelength decomposition ILP model could

theoretically provide a better LP relaxation bound than the lightpath decomposition, it is usually

not the case on classical data instances. Therefore, while providing a better LP bound in general,
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additional complexity is put on the pricing problems, and impact the computational times as will

be seen in Section 2.4. In the current work, we revisit the lightpath decomposition, and compare

its performances on the same instances as [Jaumard and Daryalal, 2017]. We show that despite its

wavelength symmetry, we are able to produce significantly better results than the latest Maximum

Independent Routing Configuration decomposition proposed model and algorithm of Jaumard and

Daryalal [2017] both in terms of solution quality and algorithm efficiency.

1.3.2 Routing and Spectrum Assignment

Various mathematical models have already been proposed for solving the RSA problem, includ-

ing several column generation models, however with different decomposition schemes, and different

solution processes. All classical Integer Linear Programming (ILP) models are not scalable and can

only solve very small data instances.

We now review the column generation models. Ruiz et al. [2013b] proposed a first column

generation model, with the minimization of the number of denied demands and the amount of

unserved bit-rate. They are able to solve data instances with up to 96 slots, and an overall demand

distributed over a set of 180 node pairs in the Spain network (21 nodes). Klinkowski et al. [2014]

improved the formulation of Ruiz et al. [2013b] with the use of valid inequalities (cuts), but did not

go significantly farther than in [Ruiz et al., 2013b]. Klinkowski and Walkowiak [2015] reformulated

the RSA problem as a mixed-integer program and solved it using a branch-and-price algorithm. In

order to enhance the performance of their algorithm, a simulated annealing-based heuristic was

added. In a recent attempt to exactly solve large-size instances of RSA problem, Klinkowski et al.

[2016] proposed a branch-and-price algorithm. However, the resulting algorithm is not an exact

algorithm and the LP (Linear Programming) value is not a valid bound to assess the quality of

the ILP solutions, as the authors use pre-computed lightpaths, and consequently did not consider,

explicitly or implicitly, all possible lightpaths.

In this study, we propose an ε-optimal solution scheme, i.e., an algorithm that outputs an ε-

solution. The addition of a branch-and-price algorithm would make it possible to reach an optimal

solution.
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Chapter 2

Enhanced RWA Exact Solution with a

New Lightpath Decomposition

Algorithm

Enoch and Jaumard [2018a]. Enhanced RWA exact solution with a new lightpath decomposition

algorithm. In IEEE International Conference on Computing, Networking and Communications -

ICNC.

2.1 Introduction

The Routing and Wavelength Assignment (RWA) problem is concerned with the provisioning

of fixed-grid Wavelength Division Multiplexing (WDM) optical networks.

Despite the recent introduction of the flexible WDM grid, the RWA problem is still of great in-

terest for many reasons [Saleh and Simmons, 2011, 2012; Simmons, 2017; Muciaccia and Passaro,

2017]. While flexible grids are widely investigated and moved forward, they add significant network

management cost and complexity, e.g., the requirement of many bandwidth-variable transponders

together with the need to track how the spectrum is sliced up on each fiber [Simmons, 2017]. In

addition, the advantage of the flexible grid over the fixed grid is very much dependent on the gran-

ularity of the demands in terms of bandwidth: while it may offer up to a 1.5 effective capacity

7



multiplier for heavy granularities (400 Gbs and higher) [Simmons, 2017], it offers no significant

advantages for low granularities in view of its additional network costs and complexities.

We revisit the static RWA problem that consists of provisioning a set of demands over a set

of lightpaths subject to the wavelength continuity constraint (i.e., an all-optical wavelength chan-

nel between two nodes, which may span more than one fiber link). We consider the objective of

maximizing the Grade-of-Service (GoS), which is suitable for the provisioning phase of network

management, as opposed to the objective of minimizing the number of required wavelengths, which

is involved in the dimensioning phase. These two objectives lead to the so-called max-RWA and

min-RWA problems, respectively.

Under these assumptions, given a WDM network and a traffic demand matrix, the RWA problem

consists of assigning a routing path and one wavelength to each unit of traffic connection as to

maximize the number of granted connections, while avoiding any wavelength clash on a link and

a wavelength simultaneously. This problem has been extensively studied since its inception [Zang

et al., 2000; Jaumard et al., 2007], yet, with the unrelentingly growing traffic demand on Internet,

there is a need to further improve the solution of large and practical network instances.

Among the previous studies of the RWA problem, the heuristics are of practical use for their

scalability, but they do not provide any information on the quality of their solution, see, e.g., [Jau-

mard et al., 2006; Noronha and Ribeiro, 2006; Duhamel et al., 2016]. On the other hand, algorithms

for solving exact models, using ILP (Integer Linear Programming) solvers, produce in general near

optimal solutions, with an estimate of the accuracy of the solution. In this work, we propose an exact

lighpath decomposition model and an ε-optimal algorithm. We aim to improve upon the quality and

the efficiency of the previous existing studies. In doing so, the proposed lightpath decomposition

model will be solved using column generation (CG) techniques with a polynomial-time lightpath

generator. This contrasts with previously proposed decomposition schemes, e.g., with wavelength

Configurations [Jaumard and Daryalal, 2017], in which symmetry was eliminated at the expense of

a non-polynomial algorithm for generating wavelength Configurations.

The paper is organized as follows. We define the notations and state the lightpath decomposition

ILP model in Section 2.2. Next, in Section 2.3, we describe precisely the L_CG algorithm to solve

it efficiently. Performances of the L_CG algorithm is extensively evaluated in Section 2.4, and
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shown to be significantly faster than the best currently available RWA algorithms. Conclusions are

drawn in the last section.

2.2 L_CG: Lightpath Decomposition Model

We assume a transparent All-Optical Network (AON), and we consider the general case of

asymmetrical traffic.

We propose a lightpath-based model similar to the one introduced in [Lee et al., 2002]. It differs

from the path formulation studies, e.g., [Jaumard et al., 2009; Liu and Rouskas, 2012], in that the

variables are indexed by both a path and a wavelength.

Consider a WDM optical network represented by a directed graph G = (V,L) where V repre-

sents the nodes of the network, and L is the set of links representing the directional optical fibers.

The optical spectrum is divided into a set of wavelengths with equal capacity, denoted by Λ. The

traffic can be viewed as a |V |× |V |matrix where each element Dsd represents the number of wave-

length units from a source node vs to a destination node vd. Let SD be the set of node-pairs with

traffic.

For a given node-pair (vs, vd) ∈ SD, we define a Lightpath π as the routing path of a traffic

connection from vs to vd on a given wavelength λ ∈ Λ. Let Π be the set of all lightpaths π for

all pairs in SD. The decision variable xπ determines whether lightpath π is retained in the optimal

solution. We define the following parameters:

- asdπ : indicates if lightpath π serves a unit connection (vs, vd) ∈ SD.

- bλπ`: indicates if lightpath π is routed on wavelength λ ∈ Λ and a path that contains link

` ∈ L.

The ILP model reads as follows:

z = max
∑
π∈Π

xπ (number of granted requests) (2.1)

9



subject to:

∑
π∈Π

asdπ xπ ≤ Dsd (vs, vd) ∈ SD (2.2)

∑
π∈Π

bλπ`xπ ≤ 1 ` ∈ L, λ ∈ Λ (2.3)

xπ ∈ {0, 1} π ∈ Π. (2.4)

Constraints (2.2) ensure that the number of connections from a source to a destination does not

exceed the actual demand. Constraints (2.3) mean that each wavelength on each link is used by at

most one connection.

Note that the above model remains valid even in a network with multi-fiber links. It suffices to

build a graph, which is a multi-graph, where each link is associated with one fiber link.

2.3 Solution Design

After reviewing very briefly the characteristics of a column generation algorithm, we describe

in detail the L_CG algorithm we used for solving the lightpath decomposition model that was

proposed in the previous section.

2.3.1 Column Generation Framework

Given the exponential number of columns - lightpaths - in the proposed model, we resort to

the Column Generation method [Gilmore and Gomory, 1961] to solve its linear relaxation, and

then derive an integer solution. This technique consists of decomposing the original problem into

a Restricted Master Problem - RMP - (i.e., model (2.1) - (2.4) with a very restricted number of

variables) and one or several pricing problems - PPs. In the particular case of model (2.1) - (2.4),

we will show in the next section that the pricing problem can be decomposed into |V |2 × |Λ|

independent smaller pricing problems, each denoted by PPsd,λ. The RMP and the PP(s) are solved

alternately. Solving the RMP consists in selecting the best lightpaths, while solving the PPs allows

the generation of improving potential lightpaths, i.e., lightpaths such that, if added to the current
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RMP, improve the optimal value of its linear relaxation. The process continues until the optimality

condition is satisfied, that is, all the so-called reduced costs that define the objective function of the

pricing problems are negative, see [Chvatal, 1983] if not familiar with linear programming concepts.

Once the optimal solution of the linear relaxation has been reached, we derive an integer solu-

tion by solving exactly the last RMP with integrality requirements. This leads to an integer solution,

denoted by z̃ILP. This last value is not necessarily the optimal value, but we can easily compute its

accuracy ε. As we will see with the numerical results in Section 2.4, the accuracy gap is small, so

we decided not to resort to a solution scheme, such as, e.g., a branch-and-price algorithm [Barnhart

et al., 1998], in order to compute an integer optimal solution. Indeed, while a branch-and-price

algorithm would allow to compute an optimal integer solution, it would require much more com-

putational resources, which is not justified in view of the very good accuracy of the solutions in

practice (see Section 2.4).

The accuracy (ε) of the integer solution, derived by solving exactly the ILP model associated

with the last RMP, is defined as follows:

ε =
z?LP − z̃ILP

z̃ILP
, (2.5)

where z?LP and z̃ILP denote the optimal LP value and the optimal ILP value of the last RMP, respec-

tively. The solution process is illustrated in the flowchart of Figure 2.1.

Before any LP re-optimization, we solve the whole series of pricing problems, where each

pricing problem PPsd,λ is associated with one node pair and one wavelength.

After each re-optimization of the RMP, we eliminate the variables that are not in the basis, as

described in [Chvatal, 1983]. While we may need to regenerate some of the eliminated columns (but

they are not expensive to generate), it helps to maintain a reasonable number of variables, indeed

equal to the number of constraints. Moreover, before deriving an ILP solution, i.e., solving exactly

the last RMP subject to integer requirements, we remove all variables which are equal to zero, i.e.,

not contributing to the value of z?LP.
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Figure 2.1: Flow chart of the L_CG Algorithm for RWA
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2.3.2 Decomposition of the Pricing Problem

We, next, show that the column generation decomposition involves a set of independent elemen-

tary pricing problems, denoted by PPsd,λ, one for each node pair and wavelength.

Let µsd ≥ 0 and µλ` ≥ 0 be the values of the dual variables associated with constraints (2.2)

and (2.3), respectively. For a given vertex v ∈ V , we denote by ω−(v) (respectively ω+(v)) the set

of ingoing (respectively outgoing) links. The objective of the pricing problem PP is defined by the

reduced value [Chvatal, 1983] and can be written as follows.

[PP] max 1−
∑

(vs,vd)∈SD

µsd a
sd
π −

∑
`∈L

∑
λ∈Λ

µλ` b
λ
π`. (2.6)

subject to:

∑
(vs,vd)∈SD

asdπ = 1 (2.7)

∑
`∈ω−(vs)

bλπ` =
∑

`∈ω+(vd)

bλπ` = asdπ λ ∈ Λ, (vs, vd) ∈ SD (2.8)

∑
`∈ω−(v)

bλπ` =
∑

`∈ω+(v)

bλπ` λ ∈ Λ, (vs, vd) ∈ SD, v ∈ V \ {vs, vd} (2.9)

asdπ ∈ {0, 1} (vs, vd) ∈ SD (2.10)

bλπ` ∈ {0, 1} λ ∈ Λ, ` ∈ L. (2.11)

The set of constraints corresponds to flow constraints in order to determine a path for each

(vs, vd) and each λ.

The objective of the Pricing Problem is to find a lightpath that optimizes the reduced value.

Instead of generating only one optimal lightpath, we will compute all feasible lightpaths for which

the reduced value is positive, in a multi-column generation scheme.

Given the wavelength continuity constraint, i.e., each lightpath must be routed on only one

wavelength, it is possible to fix the wavelength and solve multiple smaller Pricing Problems, one

for each wavelength, sequentially.

In addition, a lightpath is defined for one node-pair only. Therefore, we can decompose the
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Pricing Problem further into sequential smaller problems, by fixing the node-pair at each iteration

(i.e., by setting asdπ to 1 for the current node-pair and to 0 for all the others).

Thus, rather than solving the pricing problem as a whole using an ILP solver, it is of interest to

decompose it into |SD|× |Λ| independent smaller pricing problems PPsd,λ, whose reduced value is

defined as follows:

[PPsd,λ] max 1− µsd −
∑
`∈L

µλ` b
λ
π`. (2.12)

For a given (vs, vd), the first terms of the reduced value, i.e., 1 − µsd is a constant. Hence, the

maximization of the reduced value is equivalent to:

[PPsd,λ] min
∑
`∈L

µλ` b
λ
π`. (2.13)

Taking into account that the set of constraints amounts to a set of flow constraints for a given

node pair and wavelength, each pricing problem PPsd,λ is equivalent to a shortest-path problem with

non-negative weights µλ` , for ` ∈ L.

As a result of this decomposition, we are able to solve the pricing problem using |SD| × |Λ|

times a polynomial-time graph algorithm (e.g., Dijkstra [Ahuja et al., 1993]), instead of an ILP. As

we will see in Section 2.4, this approach yields substantial increase of efficiency.

2.3.3 Initial Set of Columns

We propose a symmetry breaking initialization, solving in sequence the various pricing prob-

lems and re-optimizing the RMP more often than in the steady state, as described in the flowchart

of Figure 2.2.

Initially, the first RMP is empty and all its dual values are null. This implies that, for each unit

connection (vs, vd), the first series of pricing problems will compute a shortest path in terms of the

number of hops only. In order to avoid getting the same lightpaths for a given node pair, for all the

wavelengths, we need to be cautious and therefore re-optimize the RMP more often.

Indeed, in the beginning of the column generation process, we solve all the elementary pricing

problems PPsd,λ for a given λ. After each λ round, we re-optimize the current RMP, which produces
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Figure 2.2: Computation of the Initial Set of Columns

new dual values. Those are then used in the elementary pricing problems for the next wavelength,

see Figure 2.2) for the details.

The combination of (i) the generation of an initial set of columns, (ii) the pricing/elimination

of the columns after each RMP re-optimization, and (iii) the decomposition of the pricing problem

into a set of |SD| × |Λ| elementary pricing problems define the L_CG algorithm.

2.4 Numerical Results

In order to assess the efficiency of the L_CG algorithm, we compare its performance with the

current best algorithm, called here W_CG, for solving exactly (ε-optimal algorithm) the max RWA

problem, which was introduced and referred to as CG++ in [Jaumard and Daryalal, 2017].

2.4.1 Data sets

For the sake of comparison, we use the same data set as in [Jaumard and Daryalal, 2017]. It

involves six real network topologies: NSFNET, USANET, GERMANY, NTT, ATT, and BRAZIL

(see Appendix D). Table 2.1 displays a summary of their characteristics: number of nodes and links,

nodal degree, number of available wavelengths (i.e., transport capacity), number of node-pairs with
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traffic, overall demand. The traffic instances have been generated randomly. For more details on the

data set references, see [Jaumard and Daryalal, 2017].

Table 2.1: Characteristics of the Datasets

Data |V | |L| nodal
W |SD|

∑
Dsdinstances degree

NSF30

14 40 3.0
30 141 436

NSF75 75 182 1,371
NSF115 115 182 2,194
USA75

24 88 3.7
75 455 1,336

USA125 125 541 2,422
USA150 150 552 3,509
GER100

50 176 3.5
100

660
2,365

GER130 130 3,041
GER150 150 4,989
NTT42

55 144 2.6
42 338 1,038

NTT50 50 452 1,362
NTT150 150 452 5,684
ATT20 90 274 3.0 20 272 359
ATT113 71 350 4.9 113 2,869 2,918
BRAZIL48 27 140 5.2 48 549 1,370

2.4.2 Efficiency of the L_CG model and algorithm

The newly proposed L_CG algorithm, described in Section 2.3, was implemented and tested

on a 3.6-4.0 GHz 4-cores machine with 32 GB RAM, using IBM [2016a] for the solution of the

(integer) linear programs. Shortest path calculation was done with an open-source Java library

JGraphT [Naveh, 2016] implementing Dijkstra’s algorithm.

When computing the ILP solution of the last RMP, we observe that CPLEX can take exceedingly

longer time without adding much to the accuracy of the integral solution. Therefore, in order to

achieve a better trade-off between the solution accuracy and the computational time, we used the

following values for the CPLEX parameters (see [IBM, 2016b] for more details on these parameters):

• Relative MIP gap tolerance = 10−2 instead of the default CPLEX 10−4 value.

• Deterministic Time Limit = 200,000 ticks1. We are using a time limit in terms of the number

of CPU ticks rather than in seconds in order to have a deterministic behavior across differ-

ent hardware (server/computer) configurations. Only one instance (ATT20) actually reaches
1Deterministic Time Limit a computer-independent metric introduced by IBM. It measures how much algorithmic

work is required to obtain a provable optimum, independently of the computer on which it is run on.
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Table 2.2: Computational comparisons

Solution accuracies Computational performances (seconds)

Data L_CG
ε (%) comparative L_CG Overall CPU comparative

sets z?LP z̃ILP GoS (%) L_CG W_CG # cols
CPU

L_CG W_CG Ratio
LP ILP

NSF30 430 429 98.4 0.2 2.1 600 0.8 0.1 0.9 9 10
NSF75 1,242 1,233 89.8 0.7 1.0 1,673 2.0 0.3 2.4 10 4.2
NSF115 1,924 1,922 87.6 0.1 0.8 2,104 3.4 0.3 3.7 10 2.7
USA75 1,281 1,275 95.4 0.5 3.1 1,532 5.6 0.2 5.8 141 24.3
USA125 2,255 2,239 92.4 0.7 2.4 4,099 26.3 20.0 46.6 155 3.3
USA150 3,029 3,008 85.7 0.7 1.8 3,460 28.2 0.6 29.0 176 6.1
GER100 2,306 2,277 96.3 1.3 2.7 3,576 51.7 52.0 103.9 474 4.6
GER130 2,960 2,928 96.3 1.1 2.4 4,520 86.0 44.1 130.3 521 4.0
GER150 4,663 4,611 81.4 1.1 3.1 6,054 248.7 23.4 272.4 1,817 6.7
NTT42 1,038 1,037 99.9 0.1 0.0 1,096 0.7 0.1 0.9 30 33.3
NTT50 1,362 1,356 99.6 0.4 0.0 1,415 1.2 0.0 1.3 37 28.5
NTT150 5,553 5,507 96.9 0.8 0.9 5,878 14.3 0.1 14.5 231 15.9
ATT20 359 347 96.7 3.5 1.4 1,065 2.7 286.6 289.4 1,549 5.4
ATT113 2,918 2,890 99.0 1.0 0.5 4,461 342.3 119.5 462.0 1,597 3.5
Brazil48 1,370 1,358 99.1 0.9 3.9 2,199 4.5 9.2 13.8 586 42.5
Average 0.9 1.7 91.8 489 5.3

that limit. Hence, our parameter selection helps to mitigate the effect of this particular data

instance on the overall performance of the L_CG algorithm.

Comparative results are presented in Table 2.2. In the first part of Table 2.2, we provide the

lower and upper bounds (z?LP and z̃ILP ) output by the L_CG algorithm. As both algorithms solve

exactly the linear relaxations, the lower bounds they output are identical. However, as can be seen

with their comparative accuracy, their ILP solution differ. Accuracy (ε) is measured by the relative

difference between the lower bound provided by the optimal solution (z?LP ) of the linear relaxation

of the Master Problem (PM), and the upper bound derived from the value of the ILP solution (z̃ILP ),

see formula (2.5).

We observe that the L_CG algorithm outputs RWA provisioning with a higher accuracy than

the W_CG algorithm, down from an average of ε = 1.7 to less than 1%.

In the second part of Table 2.2, we compare the computational times. We observe that the L_CG

algorithm is faster than the W_CG algorithm: from 3 to 42 times faster, for an average of 5 times

faster.

These results indicate that the new L_CG algorithm using the Lightpath decomposition is more
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Figure 2.3: Characteristics of the Selected Lightpaths

scalable than the prior study, and is capable of finding better integral solutions with a smaller accu-

racy gap.

2.4.3 Percentage of Shortest Paths in the Optimal RWA Provisioning

In order for an algorithm to find a near optimal solution, it must be able not only to consider

all the shortest paths for any given node pair, but also to find the lightpaths that do not necessarily

correspond to shortest paths. On the other hand, the intuition dictates that, in general, the use

of lightpaths longer than shortest paths restrains the capability of provisioning other connections.

Consequently, the algorithm must also use the shortest paths as much as possible.

In Figure 2.3, we provide the distribution of the selected lightpaths in terms of their lengths

in the optimal RWA provisioning, as output by the L_CG algorithm. The columns of the chart

correspond to the length of the routing paths used by the selected connections in unit of number of

hops (e.g., SP+1 represents the number of connections routed on a path that is one hop longer than

the shortest path of the corresponding node-pair).

We can observe that the solutions output by the L_CG model and algorithm contain a large

fraction of shortest paths. Indeed, the average percentage of usage of shortest paths among all the

instances is 78%, which is much better that the percentage in the solutions output by the W_CG
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model and algorithm, i.e., 66%.

Taking into account that the accuracy of the solutions is less than 1% for nearly all of them, it is

unlikely that the percentage of shortest paths would be able to decrease much more.

These improvements were obtained using a modeling that bear some symmetry and require

more variables (columns) than the W_CG model, i.e., around at least |V |2 × |Λ| columns (or in

other words, at least one lightpath per node pair with traffic and wavelength), while the W_CG

model requires only at most |Λ| variables with non zero values. Indeed, the extra time that is

potentially required for solving larger LPs is counterbalanced by the polynomial-time solution of

the pricing problems, again even if there is a large number of them.

2.5 Conclusion

We proposed a very simple yet very efficient column generation decomposition to RWA problem

using a lightpath-based decomposition model. Routes are dynamically generated using a weighted

shortest path algorithm, where weights are determined by the values of the dual variables of the

RMP, and take implicitly into account both the network connectivity and the traffic distribution.

Performances of the proposed decomposition schemes are compared with the best previously

proposed ε-optimal algorithm. Resulting accuracy values are on average less than 1%, down from

1.7% in [Jaumard and Daryalal, 2017], and 5 times faster on average.

Additionally, we showcased that model symmetry is not a hindrance to its efficiency, although

it may affect the performance of the branch-and-bound when deriving an ILP solution.

Future work will investigate the re-use of such a decomposition scheme for RSA networks, with

preliminary promising results in [Enoch and Jaumard, 2018b].
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Chapter 3

Towards Optimal and Scalable Solution

for Routing and Spectrum Allocation

Enoch and Jaumard [2018b]. Towards optimal and scalable solution for routing and spectrum

allocation. Electronic Notes in Discrete Mathematics, 64, 335 - 344. 8th International Network

Optimization Conference - INOC 2017.

3.1 Introduction

In order to face the steady growth of the optical networks, network operators are now moving

to flexible or elastic optical networking. Therein, the optical spectrum is used more efficiently by

allowing finer grid spacing, resulting in sub-streams, called slots. The challenge is then to optimize

the spectrum usage through the so-called Routing and Spectrum Assignment (RSA) problem. It

appears to be a much more difficult problem than the classical routing and wavelength assignment

problem.

The paper is organized as follows. In Section 3.2, after a detailed statement of the RSA problem,

we describe the new decomposition model we propose. The solution scheme follows in Section 3.3.

Numerical results are described in Section 3.4. Conclusions are drawn in the last section.
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3.2 A New RSA Decomposition Model

3.2.1 Statement of the RSA Problem

The RSA problem assumes an undirected graph G = (V,L) with optical node set V and link

set L. We denote by ω(v) the set of links adjacent to v, for v ∈ V . The bandwidth is slotted into a

set S of spectrum slots, and a guard band of one slot is required between spectrum slices assigned

to different requests. The traffic is defined by a set K of requests where each request k ∈ K has a

source (sk), a destination (dk) and a spectrum demand Dk, expressed in terms of a number of slots.

The traffic is assumed to be symmetrical.

3.2.2 RSA Decomposition Model

We propose a column generation model relying on lightpaths, where a lightpath, denoted by c,

refers to the provisioning of a request using a routing path and a spectrum slice characterized by a

starting slot denoted by s. Let C be the set of all possible lightpaths. Each lightpath is characterized

by:

• ack: indicates if a request k is provisioned by lightpath c.

• bsc` : indicates if a slot s is used on link ` in lightpath c.

The model uses decision variables zc such that each zc indicates if lightpath c is selected in the

solution.

The objective maximizes the throughput and is written:

z = max
∑
c∈C

(∑
k∈K

Dka
c
k

)
zc (3.1)
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subject to:

∑
c∈C

ackzc ≤ 1 k ∈ K (3.2)

∑
c∈C

bsc` zc ≤ 1 ` ∈ L, s ∈ S (3.3)

zc ∈ {0, 1} c ∈ C. (3.4)

Constraints (3.2) express that each request is provisioned at most once. Constraints (3.3) make sure

that each slot is never used more than once on each fiber link.

3.3 Solution Design

Given the large number of variables/columns in the proposed model, we resort to the Column

Generation method to solve its Linear Programming (LP) relaxation [Chvatal, 1983]. This technique

consists of decomposing the original problem into a restricted master problem - RMP - (i.e., model

(3.1) - (3.4) with a very restricted number of variables) and one or several pricing problem(s) - PP.

RMP and PPs are solved alternately. Solving RMP consists in selecting the best lightpaths, while

solving one PP allows the generation of an improving potential lightpath, i.e., a lightpath such that,

if added to the current RMP, improves the optimal value of its LP relaxation. The process continues

until the optimality condition is satisfied, that is, the so-called reduced cost that defines the objective

function of the pricing problems is negative for all of them, see [Chvatal, 1983] if not familiar with

linear programming concepts. An ε-optimal solution for the RSA problem is derived by solving

exactly the ILP model associated with the last RMP.

Let Ks denote the set of requests that have the potential to be provisioned by a lightpath which

starts at slot s: Ks = {k ∈ K : s + Dk − 1 ≤ |S|}. Let Ds
k be the number of slots needed for

request k in Ks taking into account the guard-band requirement:
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Ds
k = Dk k ∈ Ks : s+Dk − 1 = |S| (3.5)

Ds
k = Dk + 1 k ∈ Ks : s+Dk − 1 < |S|. (3.6)

Each pricing problem is indexed by k and s, and produces a single potential lightpath for provi-

sioning demand k, starting at slot s.

The definition of the decision variables is as follows:

• β` indicates if the lightpath uses link ` or not ;

• bs′` indicates if slot s′ is used on a link ` or not.

Let µ(3.2)
k and µ(3.3)

`s′ be the values of the dual variables associated with constraints (3.2) and (3.3),

respectively. The pricing problem can be written as follows:

rc = max Dk − µ(3.2)
k −

∑
`∈L

∑
s′∈S

µ(3.3)
`s′ bs

′
` (3.7)

subject to:

∑
`∈ω(sk)

β` =
∑

`∈ω(dk)

β` = 1 (3.8)

∑
`∈ω(v)

β` ≤ 2 v ∈ V \ {sk, dk} (3.9)

∑
`′∈ω(v)\{`}

β`′ ≥ β` v ∈ V \ {sk, dk}, ` ∈ ω(v) (3.10)

s+Ds
k−1∑

s′=s

bs
′
` = Ds

k β` ` ∈ L (3.11)

β`, b
s′
` ∈ {0, 1} ` ∈ L, s′ ∈ S (3.12)

Constraints (3.8), (3.9) and (3.10) define the routing of the current request. Constraints (3.11)

reserve a contiguous spectrum channel for the current request.

We observe that for each link `:
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bs
′
` = β` s′ ∈ {s, . . . , s+Ds

k − 1}; (3.13)

bs
′
` = 0 s′ /∈ {s, . . . , s+Ds

k − 1}. (3.14)

Therefore, the reduced cost can be rewritten:

rc = max Dk − µ(3.2)
k −

∑
`∈L

s+Ds
k−1∑

s′=s

µ(3.3)
`s′

β`. (3.15)

The first term is a constant for each request, and the second term corresponds to a summation

over the links of the network. Therefore, we can solve the pricing problem using the following

objective function:

min
∑
`∈L

s+Ds
k−1∑

s′=s

µ(3.3)
`s′

β`, (3.16)

where µ(3.3)
`s′ are non-negative dual values. We conclude that, for each request k, the lightpath gen-

erator corresponds to a weighted shortest-path problem with link weight:
s+Ds

k−1∑
s′=s

µ(3.3)
`s′ . As a result,

the pricing problem can be solved with a polynomial time algorithm, e.g., Dijkstra’s algorithm.

The idea of using a shortest path algorithm during the pricing phase has been used by Ruiz

et al. [2013a], but in our solution scheme, we solve exactly the LP relaxation of model (3.1) - (3.4)

whereas Ruiz et al. [2013a] do not.

The flowchart of the solution process is depicted in Figure 3.1. We reach the optimal LP solu-

tion as soon as the LP optimality condition is satisfied, i.e., we get a complete round of iterations

spanning all starting slots and all requests without any new improvement in the LP value.

We have noticed that this approach produces a large number of lightpaths that end up in the ILP

problem, which can make the ILP solution process very long. In order to alleviate this problem,

we followed an academic way of implementing column generation, which consists of removing the

non basic columns, i.e., with variables which are equal to zero in the current LP solution after each

optimization of the RMP. This technique allows a great speedup both during the column generation

and the ILP solution phases.
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Figure 3.1: Flow chart of the L_CG for RSA

3.4 Numerical Results

The model and solution design described above was implemented on a 3.6-4.0 GHz 4-cores

machine with 32 GB of RAM, with the use of CPLEX (version 12.6.0) for solving the (integer)

linear programs. Shortest path calculation was done with an open-source java library JGraphT

implementing Dijkstra’s algorithm.

In a first set of experiments, we conducted experiments in order to assess the scalability of our

solution process, and the accuracy of the RSA solutions that were output. We used the same set

of data instances as [Jaumard and Daryalal, 2016], i.e., the Spain network with 21 nodes and 35

links (Figure 3.2), the same demand sets, and the same spectral efficiency of 25 Gbps per slot. With

regard to the criterion for removing less promising columns during the LP phase, and considering

that these instances are relatively small, and therefore relatively easy to solve, we used a non-

aggressive strategy consisting of removing columns with negative reduced price (within a small

tolerance). Results are shown in Table 3.1, and include a comparison with those of Jaumard and

Daryalal [2016].

We observe that the LP optimal values, denoted by z?LP , are all equal to the offered load. We
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Figure 3.2: Spain network topology

observe also that our new model/algorithm is much faster, up to 2 orders of magnitude, and is capa-

ble of finding the optimal RSA solutions, while all solution accuracies for the model and algorithm

of Jaumard and Daryalal [2016] are larger than 10%.

In a second set of experiments, we use larger data sets: First series of data sets uses again

the Spain network; Second series of data sets uses USA Network with 24 nodes and 43 links. In

addition, these data sets have the following characteristics:

• Demands are drawn from granularities {4, 8, 16} with respective proportions {70%, 20%,

10%}, thus representing demands that are more representative of those encountered in today’s

networks.

• Offered load is spread over all node pairs; Therefore, after aggregation, the number of requests

given as input to our algorithm corresponds to the number of node pairs in the network. This

means that number of aggregated requests is maximal, and that the size of the network is

actually an accurate indicator of the size of the RSA problem instance.

Considering that these data sets are relatively large, we modified some of the execution param-

eters to get the best performance as follows:

• During the LP phase, the least interesting columns are removed based on whether they are in

the basis or not, and not based on the value of their reduced cost.

• CPLEX parameter NumericalEmphasis is turned on, in order to get better numerical accuracy
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Traffic demand Current study Previous study
Offered |D| |S| z?LP

# columns z̃ILP ε
CPU (sec)

ε
CPU

load (Tbps) generated selected Throughput LP Total (sec)
Spain network: demand granularities in {1, 2, . . . , 8} slots, i.e., {25, 50, ..., 200} Gbps

3.7 35 50 3.7 1661 35 3.7 0.0% 0.3 0.3 14% 50
4.8 45 60 4.8 2619 45 4.8 0.0% 0.3 0.4 13% 86
6.8 60 75 6.8 4409 60 6.8 0.0% 0.6 0.7 15% 147
7.5 64 85 7.5 5273 64 7.5 0.0% 1.1 1.3 19% 176
7.4 70 100 7.4 6857 70 7.4 0.0% 1.4 1.7 16% 263
9.7 80 120 9.7 9456 80 9.7 0.0% 2.3 2.5 16% 323

12.0 112 150 12.0 14377 112 12.0 0.0% 4.3 5.3 14% 417
20.5 180 330 20.5 59272 180 20.5 0.0% 23.5 25.6 18% 1,606

Spain network: demand granularities in {2, 4, . . . , 16} slots, i.e., {50, 100, ..., 400} Gbps
7.5 35 80 7.5 2601 35 7.5 0.0% 0.3 0.9 10% 134
9.8 45 110 9.8 4208 45 9.8 0.0% 1.5 2.0 10% 177

10.7 60 156 10.7 9121 60 10.7 0.0% 2.6 3.1 12% 261
15.5 64 170 15.5 10472 64 15.5 0.0% 4.2 4.7 16% 630
15.1 70 236 15.1 16356 70 15.1 0.0% 7.2 7.8 13% 1,342
16.9 80 256 16.9 20085 80 16.9 0.0% 9.6 10.3 14% 1,419

Average 0.0 4.8 14.3 502.2

Table 3.1: Comparative Model/Algorithm Performance

from CPLEX, although it entails larger computational times.

• For the largest of these data sets, the number of columns in the ILP phase can be very large

causing the ILP solver to run out of memory. To work around this issue, we apply a rounding

technique where we remove the columns with the smallest values in the LP optimal solution

(less than 0.2). This also improves the speed of the ILP phase while slightly sacrificing on the

quality of the solution.

The summary of these experiments is shown in Table 3.2. Even for the larger network USA,

and with large offered loads (up to 70 Tbps), the gap between the linear solution and the integral

solution remains small, and only for the largest data sets does the gap become greater than 10%.

More remarkably, the time of execution for most of the data sets is within seconds, and only for the

largest data sets does the time become in the order of minutes, and in any case, less than 30 minutes,

which is much faster than any previous work with comparable datasets.

Indeed, instances with an upper bound (z?LP ) that differs from the offered load appear to be more

difficult to solve. They require significantly more computational time, and the accuracy of the ILP

solution decreases.
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Offered |D| |S| z?LP
# columns z?ILP ε

CPU (sec)
load (Tbps) Generated Selected Throughput LP Total

Spain Network - Demands in {4, 8, 16} slots, i.e., {100, 200, 400} Gbps
50.2 210 400 50.2 341 196 48.0 4.6% 21.7 22.4
60.0 210 400 60.0 454 197 57.8 3.8% 27.7 28.1
70.2 210 400 70.2 548 192 66.6 5.4% 41.7 42.2
80.0 210 400 80.0 702 185 73.6 8.7% 71.4 71.9
90.2 210 400 86.9 1266 161 75.0 15.8% 1112.7 1131.1

USA Network - Demands in {4, 8, 16} slots, i.e., {100, 200, 400} Gbps
50.2 276 400 50.2 489 257 46.9 7.0% 28.1 29.4
60.0 276 400 60.0 671 248 55.0 9.1% 53.3 55.8
70.2 276 400 70.2 865 243 63.9 9.9% 101.0 108.4
80.0 276 400 78.3 1685 216 65.5 19.6% 1050.8 1122.0
90.2 276 400 85.7 1602 205 72.4 18.4% 1495.2 1532.0

Table 3.2: Numerical results for new datasets

3.5 Conclusions

In this work, we proposed a new column generation model and algorithm for solving the RSA

problem. In doing so, we defined a decomposition based on starting slots and on requests in such

a way that the pricing problem was reduced to a shortest path problem, thus improving greatly the

performance and improving significantly the accuracy of the RSA solutions that are output. As a

result, we achieved a performance that is clearly better than the previous works.

However, further investigations on alternate models are needed. With the proposed model, for

larger data sets with, e.g., 100 nodes or more, the number of columns in the ILP phase will be too

large. Although the key for getting better ILP solutions than in the literature for this study, such a

large number of columns is a bottleneck for solving the RSA problem with larger data sets.
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Chapter 4

Nested Column Generation Algorithm

for the RWA Problem

In our previous RWA algorithm [Enoch and Jaumard, 2018a], we proposed a Lightpath decom-

position model and solved it using Column Generation technique which resulted in considerable

improvements over the earlier study [Jaumard and Daryalal, 2017]. In this chapter, we consider

the wavelength Configuration decomposition model that was used in [Jaumard and Daryalal, 2017],

and we solve it using a Nested Column Generation algorithm.

4.1 Decomposition model

Given a WDM optical network, using the fixed frequency grid definition (i.e., the optical spec-

trum is sliced into a number of wavelengths), and given a connection demand matrix, the RWA

problem consists of allocating a routing path and an optical wavelength to each connection, as to

maximize the Grade-of-Service (i.e., the proportion of granted connections).

A WDM optical network is represented by a directed graph G = (V,L) where V represents

the nodes of the network, and L is the set of links representing the directional optical fibers. The

optical spectrum is divided into a set of wavelengths with equal capacity (50 GHz), denoted by Λ.

Let W = |Λ|. The traffic is defined by a |V | × |V | matrix where each element Dsd represents the

number of wavelength units from a source node vs to a destination node vd. Let SD be the set of
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node-pairs with traffic.

We propose an ILP model based on a Configuration decomposition. We define a Configuration

as a set of link-disjoint lightpaths provisioning distinct connections on the same wavelength as

illustrated in Figure 4.1. Links are assumed to be bi-directional. Each link is used at most once in

each direction.

Figure 4.1: RWA wavelength Configuration.

Let C be the set of all possible Configurations. Each Configuration c ∈ C is defined with the

help of the following parameter:

• acsd: gives the number of connections from vs to vd that are provisioned by Configuration

c. Given that each Configuration is constructed on a single wavelength, this parameter cor-

responds to the number of routing paths allocated for the given node pair on the current

wavelength.

The model uses two sets of decision variables:

• zc is an integer variable that gives the number of occurrences of Configuration c in the solu-

tion.

• ysd is an intermediate integer variable that computes the number of granted connections from

vs to vd in the solution, and can be expressed in terms of zc as follows:

ysd =
∑
c∈C

acsdzc (vs, vd) ∈ SD (4.1)
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The ILP model is the same as the one in [Jaumard and Daryalal, 2017] and reads as follows:

z = max
∑

(vs,vd)∈SD

ysd (4.2)

subject to:

∑
c∈C

zc ≤W (4.3)

ysd ≤
∑
c∈C

acsdzc (vs, vd) ∈ SD (4.4)

ysd ≤ Dsd (vs, vd) ∈ SD (4.5)

zc ∈ N c ∈ C (4.6)

ysd ≥ 0 (vs, vd) ∈ SD. (4.7)

Constraints (4.3) ensure that the accepted Configurations are within the number of available wave-

lengths. Constraints (4.4) ensure that the GoS calculated by the variables ysd is backed by actual

provisioning in the Configurations zc. Constraints (4.5) limit the number of granted connections to

the demand.

In addition to this model (with two sets of variables), Jaumard and Daryalal [2017] provided

another formulation not making use of the intermediate variables ysd (see Appendix C). In the

process of the current research, we investigated both models by implementing both of them using

Nested Column Generation. We have discovered that the one-variable-set formulation performs

very poorly both in terms of the quality of the solution, and in terms of the computation time.

The intuition behind this is that the Configuration columns are relatively large which makes LP

relaxation take longer to converge to its optimal value (z?LP ). This also leads to a high contention

among the Configurations during the ILP Branch-and-Bound phase, which produces an integral

solution (z̃ILP ) with a relatively large accuracy gap.

On the other hand, the two-variable-sets model uses a set of intermediate variables ysd which

translates in relaxing the upper-bound demand constraints (C.2) on the variables zc. In fact, the
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constraints (4.4) are a relaxation of the definition (4.1). As a consequence of this relaxation, the two-

variable-sets model requires to post-process the Configurations in the final solution, as to remove

the extra provisioning that violates the demand constraints and to re-establish the equality (4.1).

In the sequel of this chapter we will describe the solution design for the two-variable-sets model

which was used to produce the results in [Jaumard and Daryalal, 2017] too.

4.2 Nested Column Generation

Column Generation consists of decomposing the original problem into a Restricted Master

Problem (RMP), i.e., with a restricted number of variables, and one or several Pricing Problems

(PP). The RMP and the PP(s) are solved alternately. Solving the RMP consists in selecting the

best columns, while solving one PP allows the generation of an improving potential column, i.e., a

column such that, if added to the current RMP, improves the optimal value of its LP relaxation. The

process continues until the optimality condition is satisfied, i.e., the so-called reduced cost that de-

fines the objective function of the Pricing Problems is non-positive for all of them [Chvatal, 1983].

The optimal value of the linear relaxation of the so-obtained RMP is denoted by z?LP and represents

an upper-bound on the optimal solution of the RWA problem. After the Column Generation phase,

the next step consists of solving the ILP model associated with the last RMP, which produces an

integral solution with a value, denoted as z̃ILP , which represents a lower-bound on the optimal

solution of the RWA problem. The integral solution thus-obtained is said to be ε-optimal where ε

denotes the relative difference between the two bounds: ε = (z?LP − z̃ILP )/z?LP .

Considering the Configuration decomposition in [Jaumard and Daryalal, 2017], although Col-

umn Generation is a powerful technique, we observed that the link-based formulation of the Pricing

Problem was not efficient enough. Given that the Pricing Problems need to be solved at each it-

eration of Column Generation, their performance can be an important hindrance to the over-all

efficiency. In order to address this difficulty, we devised an algorithm based on the idea of solv-

ing the Pricing Problem itself using Column Generation, which approach is referred to as Nested

Column Generation.
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4.2.1 Review of Nested Decompositions

The idea of applying recursive decomposition was suggested by Dantzig [1963]. Some of the

first generic implementations for Linear Program (LP) go back to the early 70’s such as Glassey

[1973] and Ho and Manne [1974]. Subsequently, many implementations for Integer Linear Pro-

graming have been produced.

Vanderbeck [2001] implemented a nested decomposition approach to a cutting-stock problem.

First the author devise a subproblem that generates cutting patterns and solves it using Column Gen-

eration, in turn, with the help of another subproblem that generates sections. The author notes that

the cutting-pattern generation subproblem is only solved approximately given that Column Gener-

ation only produces lower and upper bounds on the minimum reduced cost of a cutting-pattern, and

uses the lower bounds on the reduced costs to produce a Lagrangian bound on the cutting problem.

The author recognizes that this is a "heuristic based on the tools of exact optimization", given that

the optimality of the Lagrangean bound is not guaranteed.

Hennig et al. [2012] proposed a Nested Column Generation algorithm for the Crude Oil Tanker

Routing and Scheduling problem such that the first subproblem generates a cargo-route for each

ship. This subproblem is solved using a Branch-and-Price algorithm with the help of a second-level

subproblem which generates a route for each ship.

Closer to the applications in optical networks, Vignac et al. [2016] presented multiple models for

the Grooming, Routing and Wavelength Assignment problem, among which, a Column Generation

algorithm where a subproblem for each wavelength is defined to find the traffic carried by this

wavelength, called a Wavelength Routing Configuration. This subproblem is itself decomposed into

arc-disjoint grooming-patterns, thus leading to a nested decomposition. Similarly to Vanderbeck

[2001], the bounds of the Pricing Problems are used to compute Lagrangean dual bounds on the

master LP, thus resulting into a heuristic.

Caprara et al. [2016] referred to Nested Column Generation as Recursive Dantzig-Wolfe Refor-

mulation and used this approach to design a Branch-and-Price algorithm for solving the Temporal

Knapsack Problem.

Tilk et al. [2018] proposed an algorithm for solving the Vehicle Routing Problem with Multiple
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Resource Interdependencies where both the Master Problem and the Pricing Problem are solved

using Branch-and-Price. The authors also give a detailed review on the use of nested decompositions

in other publications (e.g., Cordeau et al. [2001]; Dohn and Mason [2013]).

4.2.2 Processing Flow

Figure 4.2: Nested Column Generation Flow for RWA

Figure 4.2 shows the processing flow of our Nested Column Generation algorithm as applied

to the RWA problem. The Column Generation flow used to solve the Pricing problem, is identical

to that used to solve the Master problem, thus the naming of Nested Column Generation. We exit

the process of generating Configurations for the Master Problem, when the Pricing Problem cannot

produce an improving Configuration, i.e., the optimal value of the ILP associated with the Pricing

Problem is null ( rc?ILP = 0).

4.2.3 Optimality of the Linear Relaxation

The main outcome of Column Generation is to produce a strong linear relaxation bound z?LP on

the optimal solution of the Master Problem. This outcome is based on the premise that the Pricing

Problem is solved to optimality [Dantzig, 1963], in particular, when the stopping condition to exit
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Column Generation is verified (rc?ILP = 0). However, in Nested Column Generation, the Pricing

Problem is solved using Column Generation meaning that the integer solutions that we obtain for

the Pricing Problems are only lower-bounds (assuming Branch-and-Price is not employed as is the

case in this study).

Nevertheless, thanks to Nested Column Generation, we have also an upper bound on the optimal

solution of the Pricing Problem (rc?LP ). So when the Pricing Problem fails to generate a new

Configuration (r̃cILP = 0), there are two possibilities:

• rc?LP = 0: we can deduce that rc?ILP = 0, and therefore the exit condition is satisfied. In this

case, the LP relaxation of the Master Problem is optimal.

• rc?LP > 0: this means there is no guarantee that rc?ILP = 0, and therefore, the LP relaxation

of the Master Problem might not be optimal.

To sum up, theoretically Nested Column Generation does not guarantee the accuracy of the

LP relaxation bound of the Master Problem (). In fact, some studies resorted to a Branch-and-

Price approach (with additional overhead) for solving the Pricing Problem in order to guarantee

this accuracy [Hennig et al., 2012; Caprara et al., 2016; Tilk et al., 2018]. However, it is possible

empirically to conclude whether the LP relaxation is optimal or not by verifying if the Pricing

Problem was solved to optimality in the last iteration.

4.3 Solution Design

As shown in Figure 4.2, we apply Nested Column Generation where we define a Pricing Prob-

lem that feeds Configurations to the Master Problem, and we solve this Pricing Problem in turn

using Column Generation, meaning that we define a Nested Pricing Problem which feeds Light-

paths to the first level Pricing Problem.

4.3.1 Pricing Problem

The Pricing Problem aims to generate a Configuration c for any wavelength. In the sequel of

this section, we will drop the c index to alleviate the mathematical notation.
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Let µ and µsd be the dual values corresponding to constraints (4.3) and (4.4) respectively. The

reduced cost corresponding to the model ((4.2)-(4.7)) is:

rc = max
∑

(vs,vd)∈SD

µsdasd − µ (4.8)

Generating a Configuration consists of finding routing paths π for connections between different

node-pairs. Let Πsd be the set of all possible paths from vs to vd. A routing path is defined with the

help of the following parameters:

• δ`π is a binary parameter that indicates if link ` is part of routing path π.

We define the following decision variables:

• βπ is a boolean variable that indicates if a path π is selected in the current Configuration.

We can write the correspondence between βπ and the parameters of the Master Problem as

follows:

asd =
∑
π∈Πsd

βπ (vs, vd) ∈ SD. (4.9)

After a variable substitution in the reduced cost (4.8), we obtain the Pricing Problem model as

follows:

rc = max
∑

(vs,vd)∈SD

∑
π∈Πsd

µsdβπ − µ (4.10)

subject to:

∑
π∈Πsd

βπ ≤ Dsd (vs, vd) ∈ SD (4.11)

∑
(vs,vd)∈SD

∑
π∈Πsd

δ`πβπ ≤ 1 ` ∈ L (4.12)

βπ ∈ {0, 1} π ∈ Π. (4.13)
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Constraints (4.11) limit the number of paths for a given node-pair to the demand. Constraints

(4.12) mean that each link is traversed by at most one path. This ensures that the paths forming the

Configuration are link-disjoint.

4.3.2 Path Generator

The path generator (Nested Pricing Problem) aims to generate routing paths for each node-pair,

and feeds them to the - first level - Pricing Problem.

Let νsd and ν` be the dual values corresponding to constraints (4.11) and (4.12) respectively.

For each node-pair (vs, vd) ∈ SD, the reduced cost of a path π ∈ Πsd is:

max µsd − νsd −
∑
`∈L

ν`δ
`
π. (4.14)

We get a shortest-path problem with non-negative weights for each (vs, vd) ∈ SD

min
∑
`∈L

ν`δ
`
π (4.15)

which is solved in polynomial time.

4.4 Numerical Results

We ran this algorithm on the same dataset as in [Jaumard and Daryalal, 2017; Enoch and Jau-

mard, 2018a]. For the best performance, we ran CPLEX in a single thread and we turned on the

CPX_PARAM_NUMERICALEMPHASIS 1 switch. We have also observed that the ILP phase can

take too long without adding much to the quality of the integral solution. Therefore we opted to

pre-terminate the ILP phase by setting the parameter CPX_PARAM_EPGAP 2 to 1.e-1, thus making

a trade-off in the benefit of computation time. Table 4.1 shows the complete results and comparison

with the previous algorithms. (We did not re-implement the reference algorithm W_CG presented

by Jaumard and Daryalal [2017], and the results shown below are those published by its authors.)
1Numerical precision emphasis
2Relative MIP gap tolerance: default: 1e-04.
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Table 4.1: W_NCG Algorithm Results and Comparison

Solution Computational performance (sec)
W_NCG ε (%) comparative W_NCG Overall CPU comparative

Data set z?LP z̃ILP GoS (%) W_NCG L_CG W_CG # cols LP CPU ILP CPU W_NCG L_CG W_CG
NSF30 430 395 90.6 8.9 0.2 2.1 66 1.0 0.2 1.2 0.9 9
NSF75 1242 1205 87.8 3.1 0.7 1.0 71 1.2 0.1 1.3 2.4 10
NSF115 1924 1890 86.1 1.8 0.1 0.8 68 0.8 0.1 0.9 3.7 10
USA75 1281 1170 87.6 9.5 0.5 3.1 169 19.0 0.9 19.9 5.8 141
USA125 2255 2094 86.5 7.7 0.7 2.4 174 30.3 0.2 30.5 46.6 155
USA150 3029 2895 82.5 4.6 0.7 1.8 171 25.5 0.2 25.7 29.0 176
GER100 2306 2114 89.4 9.1 1.3 2.7 211 59.1 2.0 61.1 103.9 474
GER130 2960 2738 90.0 8.1 1.1 2.4 251 88.9 0.9 89.8 130.3 521
GER150 4663 4314 76.1 8.1 1.1 3.1 282 318.7 3.6 322.3 272.4 1817
NTT42 1038 1038 100.0 0.0 0.1 0.0 15 0.1 0.1 0.2 0.9 30
NTT50 1362 1341 98.5 1.6 0.4 0.0 36 0.4 0.1 0.5 1.3 37
NTT150 5553 5271 92.7 5.4 0.8 0.9 167 9.5 0.5 10.0 14.5 231
ATT20 359 322 89.7 11.5 3.5 1.4 90 5.4 0.4 5.8 289.4 1549
ATT113 2918 2897 99.3 0.7 1.0 0.5 627 216.7 1.6 218.3 462.0 1597
Brazil48 1370 1242 90.7 10.3 0.9 3.9 132 17.3 1.6 18.9 13.8 586
Average 6.0 0.9 1.7 53.8 91.8 490

We observe for all the instances that: When the Pricing Problem fails to generate a new Config-

uration (i.e., r̃cILP = 0), we have also rc?LP = 0, which implies that rc?ILP = 0 meaning that the

Pricing Problem is solved optimally. Therefore, the LP relaxation solution obtained for the Mas-

ter Problem z?LP is optimal and is an upper-bound on the optimal solution z?ILP (see discussion at

Section 4.2.3).

Due to the pre-termination of the ILP phase, the time spent in this phase is very small, which

leads to an overall computation time of 53.8 seconds on average which is better than the other

algorithms. However, the ILP gap of 6% on average is larger than the other algorithms. This can be

partially due the large size of the Configuration columns as compared to the Lightpath columns. In

fact, even if the number of columns in the Configuration decomposition is smaller, it intersects with

more constraints which makes for an ILP with a higher density, thus more difficult to solve.

Although the W_NCG algorithm is fast, it suffers from a large accuracy gap of the integral

solution. The algorithm L_CG presented in [Enoch and Jaumard, 2018a] using a Lightpath decom-

position remains the best performing algorithm overall.

38



Chapter 5

Nested Column Generation Algorithm

for the RSA Problem

The RSA optimization problem is key to the provisioning of Elastic Optical Networks. This

problem has been shown to be NP-hard by Shirazipourazad et al. [2013]. Therefore, in order to solve

it exactly (i.e., with a calculated accuracy), we need to employ Integer Linear Programing. While

ILP compact formulations (e.g., link-based) have a polynomial number of variables, they do not

scale well when the problem instances reach a real-life size. Therefore, we consider decomposition

formulations.

In our previous study [Enoch and Jaumard, 2018b], we proposed a decomposition formulation

based on a Lightpath column, and we solved it using Column Generation technique. This Lightpath

decomposition proved to be very efficient compared to previous algorithms. But, as we scaled up

our problem instances, we sensed the efficiency limits of the Lightpath decomposition. In fact,

the fine-granularity of the Lightpath columns makes it that the number of columns in the final

ILP is very high, and can take very long to be solved. Consequently, we decided to explore a

different decomposition formulation based on a column definition as a set of lightpaths referred to

as a Configuration of lightpaths.

The Configuration decomposition has been previously explored in [Jaumard and Daryalal, 2017]

using Column Generation and combining two algorithms to solve the Pricing Problem, one of
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which is a Path-based ILP that is restricted to a pre-computed subset of paths and generates feasible

Configurations quickly, and the other one is an optimal Link-based ILP used at the end of Column

Generation to guarantee the optimality of the Pricing Problem. In the current study, we introduce a

new formulation for the Configuration decomposition, and more importantly, we implement Nested

Column Generation technique that aims to have only one Path-based ILP for the Pricing Problem,

and solve it optimally and efficiently.

5.1 RSA Decomposition Model

5.1.1 Statement of the RSA Problem

We consider an Elastic Optical Network and we represent its topology by an undirected graph

G = (V,L) with node set V and link set L. The bandwidth spectrum of the optical network is

sliced into a set S of frequency slots of width 12.5GHz. The traffic is defined by a set K of optical

connections where each connection k ∈ K is defined by a source (sk), a destination (dk) and a

bandwidth demand Dk, expressed in terms of a number of slots.

Given an Elastic Optical Network, and a traffic demand matrix between its nodes, the RSA

problem consists of finding optical channels for the traffic requests, as to maximize the overall

throughput. For a given traffic request k ∈ K from source node sk to destination node dk, with

spectrum demand Dk, an optical channel (or lightpath) is a combination of a routing path Πk from

node sk to node dk, and an optical slice that is composed of a contiguous set of spectrum slots and

that is continuous throughout the routing path Πk. An optical slice is - by definition - a contiguous

set of frequency slots, thus it can be characterized (in addition to its width Dk) by its low-end

spectrum slot which we refer to as a starting slot.

5.1.2 RSA Decomposition Model

The ILP model is based on a Configuration decomposition. We define a Configuration as a set of

link-disjoint lightpaths provisioning distinct requests and having the same starting slot. Figure 5.1

shows an example of a Configuration of three lightpaths.
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Figure 5.1: Configuration illustration
The first request connects node-pair {v2, v9}. It is routed using three links. Its demand is 8 slots.

This configuration contains three lightpaths all of which start at slot 5.

Let C be the set of all possible Configurations. Each Configuration c ∈ C is defined with the

help of the following parameters:

• ack: indicates if a request k is provisioned by Configuration c.

• bsc` : indicates if one of the requests provisioned in Configuration c is routed on link ` while

assigned slot s as part of its spectrum slice.

The model uses two sets of decision variables:

• zc is a binary variable that indicates if Configuration c is selected in the solution.

• yk is an intermediate binary variable that indicates if a request k is granted in the solution,

and can be expressed in terms of zc as follows:

yk =
∑
c∈C

ackzc k ∈ K. (5.1)

The objective function consists of maximizing the throughput and is written in terms of yk as

follows:
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z = max
∑
k∈K

Dkyk (5.2)

subject to:

yk ≤
∑
c∈C

ackzc k ∈ K, (5.3)

∑
c∈C

bsc` zc ≤ 1 ` ∈ L, s ∈ S, (5.4)

zc ∈ {0, 1} c ∈ C, (5.5)

0 ≤ yk ≤ 1 k ∈ K. (5.6)

Constraints (5.3) means that a request k is granted only if it is provisioned in at least one of the

Configurations zc. Constraints (5.4) make sure that each slot on each fiber link is not used by more

than one Configuration zc. The integrality of variables yk is garanteed by the combination of (5.2)

and (5.3), and needs not to be explicitly enforced in (5.6).

During the implementation of Nested Column Generation for RWA problem previously, we

discussed that the two-variable-sets model making use of the intermediate variables is easier to

solve than the model with only one set of variables. Following this inspiration, we designed the

current model for RSA problem in the same spirit which proved to be fruitful. In fact, we have done

experiments with Nested Column Generation using the compact model for RSA in [Jaumard and

Daryalal, 2016], which we recall in Appendix B, and observed that the gap between the solution

and the LP bound is very large which indicates that the solution is not close to the optimal solution.

While considering a model with two sets of variables, we have also examined a model where

the intermediate variables are aggregated per node-pair (ysd =
∑
{vs,vd}∈SD a

c
sdzc) such that their

number can be lesser. This prospect was unfruitful because the variables ysd then had to be integer

(whereas the variables yk are binary), thus having a loose domain, which impacts the tightness of

the model negatively.

In the sequel of this chapter, we describe the design and present the results of the model defined
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above with intermediate binary variables yk.

5.2 Solution Design

5.2.1 Nested Column Generation Processing Flow

Figure 5.2 shows the processing flow of our Nested Column Generation algorithm as applied to

the RSA problem.

Figure 5.2: Nested Column Generation Flow for RSA

The Column Generation flow used to solve a Pricing problem, is identical to that used to solve

the Master problem, thus the naming of Nested Column Generation.

The stop condition for the generation of Configurations is met when, after considering all the

starting slots of the optical spectrum, the Pricing Problem cannot produce any improving Configu-

rations.

5.2.2 Pricing Problem

As shown in Figure 5.2, the goal of the Pricing Problem is to compute an optimal Configuration

for each starting slot s (for clear distinction from the starting slot, we will index the provisioning
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slots by s′). In this section we also drop the Configuration index c in order to alleviate the notation.

Given that the starting slot is fixed for each Pricing Problem, the optical slice allocated to any

request k can be deduced from the starting slot and the size of the request demand Dk. Therefore

each Pricing Problem needs only to produce the routing paths for the lightpaths of the optimal

Configuration. Let Πk be the set of all possible routing paths of request k. A routing path π ∈ Πk

of request k is defined with the help of a binary parameter δ`π that indicates if link ` is part of the

routing path π.

We define a set of decision variables for the Pricing Problem as follows:

• βπ is a binary variable that indicates if routing path π is included in the the optimal Configu-

ration.

Let µk and µ`s′ be the dual values of constraints (5.3) and (5.4) respectively. The reduced cost

for the model (5.2)-(5.6) is:

rc = max
∑
k∈K

µkak −
∑
`∈L

∑
s′∈S

µ`s′b
s′
` . (5.7)

The correspondence between the pricing solution and the master’s parameters is as follows:

ak =
∑
π∈Πk

βπ k ∈ K (5.8)

bs
′
` = 0 ` ∈ L, s′ /∈ {s, . . . , s+Ds

k − 1} (5.9)

bs
′
` =

∑
k∈K

∑
π∈Πk

δ`πβπ ` ∈ L, s′ ∈ {s, . . . , s+Ds
k − 1}. (5.10)

Therefore, for a given starting slot s, the pricing problem reads as follows:

rc = max
∑
k∈K

∑
π∈Πk

µk −∑
`∈L

(

s+Ds
k−1∑

s′=s

µ`s′)δ
`
π

βπ (5.11)

subject to:
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∑
π∈Πk

βπ ≤ 1 k ∈ K (5.12)

∑
k∈K

∑
π∈Πk

δ`πβπ ≤ 1 ` ∈ L (5.13)

βπ ∈ {0, 1} k ∈ K,π ∈ Πk. (5.14)

Constraints (5.12) mean that each request is provisioned at most once, and constraints (5.13)

mean that each link is traversed by at most one lightpath. This ensures that the lightpaths forming

the Configuration are link-disjoint.

5.2.3 Lightpath Generator

Let νk and ν` be the values of the dual variables associated with constraints (5.12) and (5.13)

respectively. Given a starting slot and given a request k ∈ K, the reduced cost is:

max µk −
∑
`∈L

(

s+Ds
k−1∑

s′=s

µ`s′)δ
` − νk −

∑
`∈L

ν`δ
` (5.15)

which we streamline as:

max (µk − νk)−
∑
`∈L

(

s+Ds
k−1∑

s′=s

µ`s′) + ν`

 δ` (5.16)

We get a shortest-path problem with non-negative weights for each k ∈ K:

min
∑
`∈L

(

s+Ds
k−1∑

s′=s

µ`s′) + ν`

 δ`. (5.17)

5.3 Empirical Study

The datasets used in this empirical study use the Spain network topology with 21 nodes and 35

links, and the USA network topology with 24 nodes and 43 links.

The solution was implemented in Java. For the Branch-and-Bound part we used IBM CPLEX
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solver 12.6 in a single thread mode. Throughout the LP phase, only the columns in the basis are

retained, and the columns that drop from the basis are dropped from the current RMP, as suggested

by Dantzig [1963], in order to maintain the size of the LP manageable, and force the algorithm to

produce better columns in terms of low-fractionality.

It is known that linear programs’ solvers (CPLEX in this paper) induce some very small numer-

ical errors. For being so small, usually these errors are not a big hindrance in Column Generation

algorithms. But in this study, these errors can be quite a problem. In fact, at the second level of our

Nested Column Generation, the lightpath generator is not solved as a linear program but is solved

as an undirected graph shortest-path problem using Dijkstra which does not allow negative link

weights. But, while all dual values in this paper are supposed to be non-negative, CPLEX produces

for some of them small negative values. In order to overcome this issue, we are rounding up to zero

those negative dual values used in the link weights.

We observe for all the data instances that: When the Pricing Problems fail to generate new

Configurations (i.e., r̃cILP = 0), we have also rc?LP = 0, which implies that rc?ILP = 0 meaning

that the Pricing Problems are solved optimally. Therefore, the LP relaxation of the Master Problem

z?LP is optimal and is an upper-bound on the optimal solution z?ILP (see discussion at Section 4.2.3).

5.3.1 ICTON dataset

This dataset was first introduced in [Jaumard and Daryalal, 2016] at the conference ICTON’2016,

where it was solved using a Column Generation algorithm based on a Configuration decomposition

(see Appendix B) which we will refer to as C_CG. This dataset was generated using the Spain

network topology. Table 5.1 shows the results obtained using the current algorithm as well as a

comparison with the results published in [Jaumard and Daryalal, 2016] and the results published in

[Enoch and Jaumard, 2018b].

We did not re-implement the algorithm C_CG of Jaumard and Daryalal [2016] and the compar-

ison is made with the results that were published by the authors of that algorithm. Considering that

they produced their results on a 1.9-2.5GHz machine (in contrast with our 3.6-4.0GHz machine),

it would be reasonable to divide their computation times by two for the purpose of the comparison

(below) that remains approximative.
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Table 5.1: ICTON dataset - Solution and Comparison

Traffic demand Solution quality ε (%) comparison CPU comparison (sec)
Offered

load (Tbps)
|D| |S| z?LP (Tbps) z̃ILP (Tbps) GoS (%) C_NCG L_CG C_CG C_NCG L_CG C_CG

Spain network: demand granularities in {1, 2„ 8} slots, i.e., {25, 50, ..., 200} Gbps
3.7 35 50 3.7 3.6 98.0 2.8 0.0 14.0 0.5 0.3 50.0
4.8 45 60 4.8 4.7 98.9 1.1 0.0 13.0 0.6 0.4 86.0
6.8 60 75 6.8 6.72 99.3 0.7 0.0 15.0 0.8 0.7 147.0
7.5 64 85 7.5 7.15 96.0 4.9 0.0 19.0 0.8 1.3 176.0
7.4 70 100 7.4 7.32 99.3 0.7 0.0 16.0 1.2 1.7 263.0
9.7 80 120 9.7 9.52 98.4 1.6 0.0 16.0 1.4 2.5 323.0

12.0 112 150 12.0 11.95 100.0 0.0 0.0 14.0 1.7 5.3 417.0
20.5 180 330 20.5 20.2 98.4 1.6 0.0 18.0 4.0 25.6 1606.0

Spain network: demand granularities in {2, 4„ 16} slots, i.e., {50, 100, ..., 400} Gbps
7.5 35 80 7.5 7.4 99.3 0.7 0.0 10.0 0.8 0.9 134.0
9.8 45 110 9.8 9.7 99.5 0.5 0.0 10.0 0.9 2.0 177.0

10.7 60 156 10.7 10.65 99.5 0.5 0.0 12.0 0.9 3.1 261.0
15.5 64 170 15.5 15.5 100.0 0.0 0.0 16.0 1.4 4.7 630.0
15.1 70 236 15.1 15.1 100.0 0.0 0.0 13.0 1.4 7.8 1342.0
16.9 80 256 16.9 16.85 100.0 0.0 0.0 14.0 1.4 10.3 1419.0

Average 1.1 0.0 14.3 1.3 4.8 502.2

While the C_CG algorithm by Jaumard and Daryalal [2016] takes around 4 minutes on average,

the new C_NCG algorithm takes only 1.3 seconds on average, beating even the L_CG algorithm

by Enoch and Jaumard [2018b] at around 5 seconds on average.

Regarding the quality of the solution, while the L_CG algorithm solves this dataset to optimal-

ity, the C_NCG algorithm produces a solution accuracy around 1% on average, which is still a lot

better than the accuracy of the C_CG algorithm of 14.3%.

In the next subsection, we will examine a dataset that is supposed to be much harder, and shall

be more challenging for the new C_NCG algorithm.

5.3.2 INOC dataset

This dataset was first introduced in [Enoch and Jaumard, 2018b] at the conference INOC’2017,

where it was solved using a Column Generation algorithm L_CG based on a Lightpath decompo-

sition. This dataset was generated using both the Spain network and the USA network topologies

according to the following specifications:

• Demands are drawn from granularities {4, 8, 16} in units of spectrum slots, with respective

proportions {70%, 20%, 10%}, thus generating requests that are relatively large compared to

those encountered in today’s networks, hence producing instances with relatively a high level
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of difficulty.

• Offered load is spread over all node pairs. Therefore, after aggregation, the number of re-

quests given as input to our algorithm corresponds to the number of node pairs in the network.

In order to ease down the complexity of the algorithm and enhance its execution, we opted for

the following strategies:

• Requests are aggregated per node-pair. This has the advantage of reducing the number of

requests in the optimization problem and easing-down the solving process. Note that theoret-

ically, if the problem is solved to optimality, this strategy would potentially produce a solution

with a worse quality than if the requests were not aggregated.

• Given the large size of the instances of this dataset, the numerical accuracy of the LP solv-

ing becomes crucial in order for the Column Generation to converge. To that end, CPLEX

parameter NumericalEmphasis 1 is turned on.

• We have noticed that the Integer Linear Program (ILP) phase can take a long time to cover

the whole of the Branch-and-Bound tree, without improving by much the integral solution.

Therefore we have chosen to pre-terminate the Branch-and-Bound by setting the CPLEX pa-

rameter EpGap 2 to 10−1.

• We allow multi-threading during the Branch-and-Bound phase with up to 8 threads.

• Before the Integer Linear Program (ILP) phase, we set CPLEX parameter Advance 3 to 0 in

order to enable the standard pre-solving operations instead of using the basis produced by the

last iteration of Column Generation as a starting point for the Branch-and-Bound.

Table 5.2 shows the complete results obtained using the current algorithm in terms of the ε-

optimal solution as well as the computation time. We observe that instances Spain90, USA80 and

USA90 register a spike in the computation time as compared to the other instances. As we have
1Numerical precision emphasis
2Relative MIP gap tolerance: default: 1e-04.
3If set to 1 or 2, this parameter specifies that CPLEX should use advanced starting information when it initiates

optimization.

48



Table 5.2: INOC dataset - Algorithm Results and Performance

Dataset Solution quality CPU time (sec)
Instance |S| |D| Load (Tbps) z?LP (Tbps) z̃ILP (Tbps) ε (%) GoS (%) LP ILP Total

Spain network: Demands in {4,8, 16} slots, i.e., {100, 200, 400} Gbps
Spain_50 400 413 50.2 50.2 42.6 17.8 84.9 30.5 0.3 31.0
Spain_60 400 495 60.0 60.0 47.2 27.1 78.7 113.6 0.2 114.1
Spain_70 400 578 70.2 70.2 52.3 34.2 74.5 177.0 1.0 178.2
Spain_80 400 660 80.0 80.0 55.5 44.1 69.4 254.1 2.2 256.6
Spain_90 400 743 90.2 86.9 56.0 55.1 62.1 1,756.9 940.1 2,697.7

USA network: Demands in {4,8, 16} slots, i.e., {100, 200, 400} Gbps
USA_50 400 413 50.2 50.2 41.4 21.3 82.5 27.8 0.5 28.4
USA_60 400 495 60.0 60.0 45.6 31.6 76.0 350.4 3.1 353.8
USA_70 400 578 70.2 70.2 49.9 40.7 71.1 495.4 3.1 498.9
USA_80 400 660 80.0 78.3 53.2 47.2 66.5 1,441.2 204.2 1,646.3
USA_90 400 743 90.2 85.7 56.0 53.0 62.1 1,977.5 417.0 2,395.3

Table 5.3: INOC dataset - Solution and Performance Comparison

Dataset Quality comparison CPU comparison
(sec)z?LP (Tbps) z̃ILP (Tbps) ε (%)

Instance Load (Tbps) C_NCG L_CG C_NCG L_CG C_NCG L_CG C_NCG L_CG
Spain_50 50.2 50.2 50.2 42.6 48.0 17.8 4.6 31.0 22.4
Spain_60 60.0 60.0 60.0 47.2 57.8 27.1 3.8 114.1 28.1
Spain_70 70.2 70.2 70.2 52.3 66.6 34.2 5.4 178.2 42.2
Spain_80 80.0 80.0 80.0 55.5 73.6 44.1 8.7 256.6 71.9
Spain_90 90.2 86.9 86.9 56.0 75.0 55.1 15.8 2,697.7 1,131.1
USA_50 50.2 50.2 50.2 41.4 46.9 21.3 7.0 28.4 29.4
USA_60 60.0 60.0 60.0 45.6 55.0 31.6 9.1 353.8 55.8
USA_70 70.2 70.2 70.2 49.9 63.0 40.7 9.9 498.9 108.4
USA_80 80.0 78.3 78.3 53.2 65.5 47.2 19.6 1,646.3 1,122.0
USA_90 90.2 85.7 85.7 56.0 72.4 53.0 18.4 2,395.3 1,532.0
Average 37.2 10.2 820.0 414.3

discussed in [Enoch and Jaumard, 2018b], this is due to the fact that z?LP is lesser than the offered

load. Consequently, the Column Generation needs a considerably larger number of columns to

reach the z?LP , and spends a relatively long time producing those columns. This dataset has been

purposefully designed to showcase this type of difficult instances.

Table 5.3 shows a comparison with the results published in [Enoch and Jaumard, 2018b]. We

can make the following observations:

• The upper-bound z?LP produced by the two algorithms is the same. A theoretical study of this

upper-bound could be considered in a future work.

• The integral solution found by C_NCG algorithm is less good than the one found by the
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L_CG algorithm and the accuracy gap is a lot larger. This is due to the fact that a Config-

uration column is a lot larger than a Lightpath column. Consequently, in the ILP phase, if

the Configuration column has even a small overlapping with another column in the integral

solution, it is rejected as a whole. To get an intuition of this phenomenon, we could make an

analogy with the Knapsack problem. If we suppose that we have a fractional Knapsack solu-

tion and we want to get the integral solution from it: The smaller the items in the fractional

solution, the lesser the contention among them, and the better the integral solution.

• The computation time of the C_NCG algorithm is less good than that of the L_CG algo-

rithm (double on average). This is also due to the disparity of size of the columns in each

decomposition. That said, the computation time of the C_NCG algorithm remains reason-

able considering the level of difficulty of this dataset.

While the C_NCG algorithm is more scalable than the previous study, it can be inefficient in

terms of solution quality for the largest data instances. We conclude that the algorithm L_CG,

based on the Lightpath decomposition, presented in [Enoch and Jaumard, 2018b] remains the most

efficient in terms of both solution quality and scalability.
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Chapter 6

Conclusion

6.1 Contributions

Considering the provisioning of Optical Networks, we have explored the RWA optimization

problem which is defined for the coarse fixed WDM frequency grid, and its successor the RSA

problem which is defined for the fine flexible frequency grid. We have reviewed the literature for

the two problems and observed the tendency to depart from compact formulations toward decom-

position formulations most notably the Configuration decomposition. We aimed to explore ways to

improve the latest results published for the two problems in [Jaumard and Daryalal, 2016, 2017]. In

doing so, we explored two possibilities:

• A Lightpath decomposition that proved to produce the best results in terms of the accuracy of

the integral solution as well as the efficiency in terms of computation time (up to two orders

of magnitude faster than the latest existing study). This decomposition enabled us to publish

two papers [Enoch and Jaumard, 2018b,a] for RSA and RWA problems respectively.

• When considering the same Configuration decomposition as the previous studies, we de-

signed a Nested Column Generation algorithm. The idea behind this approach is to tame

the difficulty of the Pricing Problem thus improving the overall performance. We applied

this algorithm to the RWA problem which resulted in a considerable improvement of the

computation time (9 times faster) but with a less good solution quality. We also applied this
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algorithm to RSA problem which produced an accuracy near optimal for the reference dataset

and improved the computation time by a factor of two orders of magnitude on average. We

are currently in the process of preparing a journal publication with our findings about Nested

Column Generation.

As an empirical contribution, in addition to the reference dataset for the RSA problem intro-

duced in [Jaumard and Daryalal, 2016], we introduced a new dataset considerably larger and more

difficult to solve, and ran our two approaches on it.

The overall observation is that the Lightpath decomposition produces the best solution with the

best accuracy, and is the most efficient one in terms of computation time.

6.2 Future Work

Equipped with the two approaches that we presented in this thesis, the next studies could con-

sider increasing the scope of the optimization problems by adding other dimensions that are useful

for real-life implementations such as varying the modulation formats, or minimizing the number of

optical regenerators needed in the optical network.
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Appendix A

Guard-band Extension of the RSA

Problem

When provisioning traffic demand in an Elastic Optical Network, a guard band of one slot is

reserved on top of the spectrum slice of each request.

If we consider the case where traffic requests are not aggregated, this means that if there are

multiple requests for the same node pair, these requests can be provisioned independently, thus,

eventually taking different routing paths, and using spectrum slices that are not neighbors. If such

requests happen to be routed on the same path using neighbors spectrum slices, they need not to be

separated by a guard-band.

In order to account for this possibility, we extend our model as follows:

Given a node pair w = {u, v}, let Kw = {k1, k2, ..., kn} be the set of requests between u and

v. We will refer to these requests as atomic. For m ∈ {1, 2, ..., n}, we denote K ′mw the set of

combinations of m requests from Kw. We have

|K ′mw | =
(
n

m

)
. (A.1)

This quantity is the mth binomial coefficient for power n. Let K ′w = ∪m=n
m=1 K

′m
w . We have

|K ′w| =
m=n∑
m=1

(
n

m

)
= 2n − 1. (A.2)
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Each combination of atomic requests produces a new derived request by summing up their

demands. K ′w is referred to as the set of derived requests. Note that Kw ⊂ K ′w given that

Kw = K ′1w. The derived requests obtained for m ∈ {2, ..., n} are referred to as composite requests.

Let K ′ = ∪w∈WK ′w. If a request k′ is derived from an atomic request k, we note k′ ← k.

For each node pair, we enumerate the derived requests using a binomial tree as in Figure A.1.

Given this data structure’s properties, this operation is done recursively as we go through the atomic

requests of a given node pair. For each derived request, we keep track of the atomic requests used

in its making.

Figure A.1: A binomial tree of order n = 3 for a node pair with 3 atomic requests

In order to account for all possible derived requests, the ILP model in Enoch and Jaumard

[2018b] (for example) is slightly modified as follows:

z = max
∑
c∈C

(∑
k′←c

∑
k→k′

Dk

)
zc (A.3)
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Subject to:

∑
c∈C

∑
k′←k

ack′zc ≤ 1 k ∈ K (A.4)

∑
c∈C

bsc` zc ≤ 1 ` ∈ L, s ∈ S (A.5)

zc ∈ {0, 1} c ∈ C. (A.6)

This modification means that the Pricing Problem needs to include all the derived requests. As

calculated earlier, the number of derived requests is much larger than the number of atomic requests.

Therefore, while this extension offers an elegant way to enumerate derived requests and modify the

model accordingly, it remains unscalable for a practical dataset such as the one introduced in Enoch

and Jaumard [2018b].
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Appendix B

Previous RSA Configuration

Decomposition Model

The model below was implemented in [Jaumard and Daryalal, 2016].

A configuration c is characterized by: ack that is equal to 1 if request k is provisioned in c, 0

otherwise, and as,ck,l that is equal to one if k is provisioned with a lightpath going through link ` and

slot s, 0 otherwise. The model is written as follows:

z = max
∑
c∈C

(∑
k∈K

Dka
c
k

)
zc (B.1)

subject to:

∑
c∈Cs

zc ≤ 1 s ∈ S (B.2)

∑
c∈C

ackzc ≤ 1 k ∈ K (B.3)

∑
c∈C

as,ck,lzc ≤ 1 ` ∈ L, s ∈ S (B.4)

zc ∈ {0, 1} c ∈ C. (B.5)

Constraints (B.2) allow at most one configuration per starting slot for the consecutive slot blocks.

56



Constraints (B.3) ensure that each request is accepted at most once. Constraints (B.4) do not allow

more than one lightpath going through a given link ` for a given slot s.
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Appendix C

RWA Configuration Decomposition -

One-variable-set Model

The model below was described in [Jaumard and Daryalal, 2017]. Each Configuration c ∈ C

is defined with the help of parameter acsd which gives the number of connections from vs to vd that

are provisioned by Configuration c.

The model uses a set of decision variables zc which is an integer variable that gives the number

of occurrences of Configuration c in the solution.

The ILP formulation reads as follows:

z = max
∑
c∈C

 ∑
(vs,vd)∈SD

acsd

 zc (C.1)

subject to:

∑
c∈C

acsdzc ≤ Dsd (vs, vd) ∈ SD (C.2)

∑
c∈C

zc ≤W (C.3)

zc ∈ Z+ c ∈ C. (C.4)
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where constraints (C.2) limit the number of granted connections to the demand, and constraints

(C.3) ensure that the accepted Configurations are within the number of available wavelengths.
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Appendix D

RWA network topologies

The data set used for RWA correspond to the network topologies: NSFNET, USANET, GER-

MANY, NTT, ATT, and BRAZIL. They are shown in the figures below where undirected lines

represent bidirectional links.

Figure D.1: NSF network topology
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Figure D.2: USA network topology

Figure D.3: NSF network topology

61



Figure D.4: NTT network topology

Figure D.5: ATT network topology
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Figure D.6: Brazil network topology
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