3,960 research outputs found

    Facial Expression Recognition

    Get PDF

    Fast human detection for video event recognition

    Get PDF
    Human body detection, which has become a research hotspot during the last two years, can be used in many video content analysis applications. This paper investigates a fast human detection method for volume based video event detection. Compared with other object detection systems, human body detection brings more challenge due to threshold problems coming from a wide range of dynamic properties. Motivated by approaches successfully introduced in facial recognition applications, it adapts and adopts feature extraction and machine learning mechanism to classify certain areas from video frames. This method starts from the extraction of Haar-like features from large numbers of sample images for well-regulated feature distribution and is followed by AdaBoost learning and detection algorithm for pattern classification. Experiment on the classifier proves the Haar-like feature based machine learning mechanism can provide a fast and steady result for human body detection and can be further applied to reduce negative aspects in human modelling and analysis for volume based event detection

    Towards socially adaptive robots : A novel method for real time recognition of human-robot interaction styles

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ICHR.2008.4756004Automatically detecting different styles of play in human-robot interaction is a key challenge towards adaptive robots, i.e. robots that are able to regulate the interactions and adapt to different interaction styles of the robot users. In this paper we present a novel algorithm for pattern recognition in human-robot interaction, the Cascaded Information Bottleneck Method. We apply it to real-time autonomous recognition of human-robot interaction styles. This method uses an information theoretic approach and enables to progressively extract relevant information from time series. It relies on a cascade of bottlenecks, the bottlenecks being trained one after the other according to the existing Agglomerative Information Bottleneck Algorithm. We show that a structure for the bottleneck states along the cascade emerges and we introduce a measure to extrapolate unseen data. We apply this method to real-time recognition of Human-Robot Interaction Styles by a robot in a detailed case study. The algorithm has been implemented for real interactions between humans and a real robot. We demonstrate that the algorithm, which is designed to operate real time, is capable of classifying interaction styles, with a good accuracy and a very acceptable delay. Our future work will evaluate this method in scenarios on robot-assisted therapy for children with autism.Peer reviewe
    corecore