28,486 research outputs found

    SAR imaging of moving targets by subaperture based low-rank and sparse decomposition

    Get PDF
    We propose a subaperture based method for synthetic aperture radar (SAR) imaging of moving targets. It exploits low-rank and sparse decomposition for extraction of moving targets from the complex SAR scene. First SAR raw data are divided into subapertures in the azimuth direction. Subsequently, low-rank and sparse decomposition is applied using the multiple subapertures data to accomplish the separation of moving targets from the stationary SAR background. A full resolution moving target image is reconstructed by combining the spectral information of the sparse subaperture images. Such an image has a high signal to clutter ratio and is well suited for motion estimation and focusing algorithms. This proposed framework extends the applicability of sparsity-driven moving target focusing methods to very low signal to clutter ratio environments. We demonstrate the performance of our approach through experiments with synthetic and real SAR data

    SAR moving target imaging in a sparsity-driven framework

    Get PDF
    In synthetic aperture radar (SAR) imaging, sparsity-driven imaging techniques have been shown to provide high resolution images with reduced sidelobes and reduced speckle, by allowing the incorporation of prior information about the scene into the problem. Just like many common SAR imaging methods, these techniques also assume the targets in the scene are stationary over the data collection interval. Here, we consider the problem of imaging in the presence of targets with unknown motion in the scene. Moving targets cause phase errors in the SAR data and these errors lead to defocusing in the corresponding spatial region in the reconstructed image. We view phase errors resulting from target motion as errors on the observation model of a static scene. Based on these observations we propose a method which not only benefits from the advantages of sparsity-driven imaging but also compansates the errors arising due to the moving targets. Considering that in SAR imaging the underlying scene usually admits a sparse representation, a nonquadratic regularization-based framework is used. The proposed method is based on minimization of a cost function which involves regularization terms imposing sparsity on the reflectivity field to be imaged, as well as on the spatial structure of the motion-related phase errors, reflecting the assumption that only a small percentage of the entire scene contains moving targets. Experimental results demonstrate the effectiveness of the proposed approach in reconstructing focused images of scenes containing multiple targets with unknown motion

    Sparsity-driven image formation and space-variant focusing for SAR

    Get PDF
    In synthetic aperture radar (SAR) imaging, the presence of moving targets in the scene causes phase errors in the SAR data and subsequently defocusing in the formed image. The defocusing caused by the moving targets exhibits space-variant characteristics, i.e., the defocusing arises only in the parts of the image containing the moving targets, whereas the stationary background is not defocused. Considering that the reflectivity field to be imaged usually admits sparse representation, we propose a sparsity-driven method for joint SAR imaging and removing the defocus caused by moving targets. The method is performed in a nonquadratic regular-ization based framework by solving an optimization problem, in which prior information about both the scene and phase errors are incorporated as constraints

    SAR moving target imaging using group sparsity

    Get PDF
    SAR imaging of scenes containing moving targets results in defocusing in the reconstructed images if the SAR observation model used in imaging does not take the motion into account. SAR data from a scene with motion can be viewed as data from a stationary scene, but with phase errors due to motion. Based on this perspective, we formulate the moving target SAR imaging problem as one of joint imaging and phase error compensation. Based on the assumption that only a small percentage of the entire scene contains moving targets, phase errors exhibit a group sparse nature, when the entire data for all the points in the scene are handled together. Considering this structure of motion-related phase errors and that many scenes of interest admit sparse representation in SAR imaging, we solve this joint problem by minimizing a cost function which involves two nonquadratic regularization terms one of which is used to enforce the sparsity of the reflectivity field to be imaged and the other is used to exploit the group sparse nature of the phase errors

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    Non-Local Compressive Sensing Based SAR Tomography

    Get PDF
    Tomographic SAR (TomoSAR) inversion of urban areas is an inherently sparse reconstruction problem and, hence, can be solved using compressive sensing (CS) algorithms. This paper proposes solutions for two notorious problems in this field: 1) TomoSAR requires a high number of data sets, which makes the technique expensive. However, it can be shown that the number of acquisitions and the signal-to-noise ratio (SNR) can be traded off against each other, because it is asymptotically only the product of the number of acquisitions and SNR that determines the reconstruction quality. We propose to increase SNR by integrating non-local estimation into the inversion and show that a reasonable reconstruction of buildings from only seven interferograms is feasible. 2) CS-based inversion is computationally expensive and therefore barely suitable for large-scale applications. We introduce a new fast and accurate algorithm for solving the non-local L1-L2-minimization problem, central to CS-based reconstruction algorithms. The applicability of the algorithm is demonstrated using simulated data and TerraSAR-X high-resolution spotlight images over an area in Munich, Germany.Comment: 10 page

    Self-assessment : updated guidance for the further education system

    Get PDF
    • …
    corecore