2,155 research outputs found

    Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    Full text link
    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.Comment: There has no technical difference to previous versions, but rather some minor word corrections. A 2-page summary of this paper was accepted by ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i

    Introducing a New Evaluation Criteria for EMD-Base Steganography Method

    Full text link
    Steganography is a technique to hide the presence of secret communication. When one of the communication elements is under the influence of the enemy, it can be used. The main measure to evaluate steganography methods in a certain capacity is security. Therefore, in a certain capacity, reducing the amount of changes in the cover media, creates a higher embedding efficiency and thus more security of an steganography method. Mostly, security and capacity are in conflict with each other, the increase of one lead to the decrease of the other. The presence of a single criterion that represents security and capacity at the same time be useful in comparing steganography methods. EMD and the relevant methods are a group of steganography techniques, which optimize the amount of changes resulting from embedding (security). The present paper is aimed to provide an evaluation criterion for this group of steganography methods. In this study, after a general review and comparison of EMD-based steganography techniques, we present a method to compare them exactly, from the perspective of embedding efficiency. First, a formula is presented to determine the value of embedding efficiency, which indicates the effect of one or more changes on one or more pixels. The results demonstrate that the proposed embedding efficiency formula shows the performance of the methods better when several changes are made on a pixel compared to the existing criteria. In the second step, we have obtained an upper bound, which determines the best efficiency for each certain capacity. Finally, based on the introduced bound, another evaluation criterion for a better comparison of the methods is presented

    A review on structured scheme representation on data security application

    Get PDF
    With the rapid development in the era of Internet and networking technology, there is always a requirement to improve the security systems, which secure the transmitted data over an unsecured channel. The needs to increase the level of security in transferring the data always become the critical issue. Therefore, data security is a significant area in covering the issue of security, which refers to protect the data from unwanted forces and prevent unauthorized access to a communication. This paper presents a review of structured-scheme representation for data security application. There are five structured-scheme types, which can be represented as dual-scheme, triple-scheme, quad-scheme, octal-scheme and hexa-scheme. These structured-scheme types are designed to improve and strengthen the security of data on the application

    A Framework for Multimedia Data Hiding (Security)

    Get PDF
    With the proliferation of multimedia data such as images, audio, and video, robust digital watermarking and data hiding techniques are needed for copyright protection, copy control, annotation, and authentication. While many techniques have been proposed for digital color and grayscale images, not all of them can be directly applied to binary document images. The difficulty lies in the fact that changing pixel values in a binary document could introduce Irregularities that is very visually noticeable. We have seen but limited number of papers proposing new techniques and ideas for document image watermarking and data hiding. In this paper, we present an overview and summary of recent developments on this important topic, and discuss important issues such as robustness and data hiding capacity of the different techniques

    Data hiding techniques in steganography using fibonacci sequence and knight tour algorithm

    Get PDF
    The foremost priority in the information and communication technology era, is achieving an efficient and accurate steganography system for hiding information. The developed system of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography system is the main issue to be addressed. This study proposed an improved for embedding secret message into an image. This newly developed method is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select the pixel before random embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8 bitplane to 12 bitplane. The proposed method is distributed over the entire image to maintain high level of security against any kind of attack. Gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. The results show good PSNR value with high capacity and these findings verified the worthiness of the proposed method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing systems in the literature

    Perceptual model-based information hiding in audio signals

    Get PDF
    Audio data hiding is the process of embedding information into an audio signal so that the embedded information is inseparable from it and imperceptible to the listener. Information hiding is a multi- disciplinary area that combines signal processing with cryptography, communication theory, coding theory, information theory and the theory of human auditory and visual systems where information is hided within a host signal. A data hiding system should be robust, meaning that the embedded data could be decoded from the combined signal, even if it is distorted or attacked. This paper examines information hiding in speech signals. A perceptual modelbased information hiding in speech signal is developed

    Pixel value differencing steganography techniques: Analysis and open challenge

    Get PDF
    Steganography is the science of secret data communication using carrier medium, such as images, videos, text, and networks. Image steganography is majorly divided into spatial and frequency domains. Pixel value differencing (PVD) considered as good steganographic algorithm due to its high payload and good visual perception in spatial domain. The purpose of this paper is two folded. First is the critical analysis of current PVD methods using evaluating parameters (payload, visual quality and resistance of attacks) and secondly it highlights the current promising directions on PVD steganographic research
    corecore