2 research outputs found

    A new proactive feature selection model based on the enhanced optimization algorithms to detect DRDoS attacks

    Get PDF
    Cyberattacks have grown steadily over the last few years. The distributed reflection denial of service (DRDoS) attack has been rising, a new variant of distributed denial of service (DDoS) attack. DRDoS attacks are more difficult to mitigate due to the dynamics and the attack strategy of this type of attack. The number of features influences the performance of the intrusion detection system by investigating the behavior of traffic. Therefore, the feature selection model improves the accuracy of the detection mechanism also reduces the time of detection by reducing the number of features. The proposed model aims to detect DRDoS attacks based on the feature selection model, and this model is called a proactive feature selection model proactive feature selection (PFS). This model uses a nature-inspired optimization algorithm for the feature subset selection. Three machine learning algorithms, i.e., k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were evaluated as the potential classifier for evaluating the selected features. We have used the CICDDoS2019 dataset for evaluation purposes. The performance of each classifier is compared to previous models. The results indicate that the suggested model works better than the current approaches providing a higher detection rate (DR), a low false-positive rate (FPR), and increased accuracy detection (DA). The PFS model shows better accuracy to detect DRDoS attacks with 89.59%

    A DRDoS Detection and Defense Method Based on Deep Forest in the Big Data Environment

    No full text
    Distributed Denial of Service (DDoS) has developed multiple variants, one of which is Distributed Reflective Denial of Service (DRDoS). With the increasing number of Internet of Things (IoT) devices, the threat of DRDoS attack is growing, and the damage of a DRDoS attack is more destructive than other types. The existing DDoS detection methods cannot be generalized in DRDoS early detection, which leads to heavy load or degradation of service when deployed at the final point. In this paper, we propose a DRDoS detection and defense method based on deep forest model (DDDF), and then we integrate differentiated service into defense model to filter out DRDoS attack flow. Firstly, from the statistics perspective on different stages of DRDoS attack flow in the big data environment, we extract a host-based DRDoS threat index (HDTI) from the network flows. Secondly, using the HDTI feature we build a DRDoS detection and defense model based on the deep forest, which consists of 1 extreme gradient boost (XGBoost) forest estimator, 2 random forest estimators, and 2 extra random forest estimators in each layer. Lastly, the differentiated service procedure applies the detection result from DDDF to drop the traffic identified in different stages and different detection points. Theoretical analysis and experiments show that the method we proposed can effectively identify DRDoS attack with higher detection rate and a lower false alarm rate, the defense model also shows distinguishing ability to effectively eliminate the DRDoS attack flows, and dramatically mitigate the damage of a DRDoS attack
    corecore