8 research outputs found

    Exact Decoding for Phrase-Based Statistical Machine Translation

    Full text link

    Exact Decoding for Phrase-Based Statistical Machine Translation

    Get PDF
    Abstract The combinatorial space of translation derivations in phrase-based statistical machine translation is given by the intersection between a translation lattice and a target language model. We replace this intractable intersection by a tractable relaxation which incorporates a low-order upperbound on the language model. Exact optimisation is achieved through a coarseto-fine strategy with connections to adaptive rejection sampling. We perform exact optimisation with unpruned language models of order 3 to 5 and show searcherror curves for beam search and cube pruning on standard test sets. This is the first work to tractably tackle exact optimisation with language models of orders higher than 3

    Tackling Sequence to Sequence Mapping Problems with Neural Networks

    Full text link
    In Natural Language Processing (NLP), it is important to detect the relationship between two sequences or to generate a sequence of tokens given another observed sequence. We call the type of problems on modelling sequence pairs as sequence to sequence (seq2seq) mapping problems. A lot of research has been devoted to finding ways of tackling these problems, with traditional approaches relying on a combination of hand-crafted features, alignment models, segmentation heuristics, and external linguistic resources. Although great progress has been made, these traditional approaches suffer from various drawbacks, such as complicated pipeline, laborious feature engineering, and the difficulty for domain adaptation. Recently, neural networks emerged as a promising solution to many problems in NLP, speech recognition, and computer vision. Neural models are powerful because they can be trained end to end, generalise well to unseen examples, and the same framework can be easily adapted to a new domain. The aim of this thesis is to advance the state-of-the-art in seq2seq mapping problems with neural networks. We explore solutions from three major aspects: investigating neural models for representing sequences, modelling interactions between sequences, and using unpaired data to boost the performance of neural models. For each aspect, we propose novel models and evaluate their efficacy on various tasks of seq2seq mapping.Comment: PhD thesi

    A DP based Search Using Monotone Alignments in Statistical Translation

    No full text
    lu this paper, we describe a Dynamic Programming (DP) based search algorithm for statistical translation and present experimental results. Tile statistical trans- lation uses two sources of information: a translation model and a language model

    Integrating source-language context into log-linear models of statistical machine translation

    Get PDF
    The translation features typically used in state-of-the-art statistical machine translation (SMT) model dependencies between the source and target phrases, but not among the phrases in the source language themselves. A swathe of research has demonstrated that integrating source context modelling directly into log-linear phrase-based SMT (PB-SMT) and hierarchical PB-SMT (HPB-SMT), and can positively influence the weighting and selection of target phrases, and thus improve translation quality. In this thesis we present novel approaches to incorporate source-language contextual modelling into the state-of-the-art SMT models in order to enhance the quality of lexical selection. We investigate the effectiveness of use of a range of contextual features, including lexical features of neighbouring words, part-of-speech tags, supertags, sentence-similarity features, dependency information, and semantic roles. We explored a series of language pairs featuring typologically different languages, and examined the scalability of our research to larger amounts of training data. While our results are mixed across feature selections, language pairs, and learning curves, we observe that including contextual features of the source sentence in general produces improvements. The most significant improvements involve the integration of long-distance contextual features, such as dependency relations in combination with part-of-speech tags in Dutch-to-English subtitle translation, the combination of dependency parse and semantic role information in English-to-Dutch parliamentary debate translation, supertag features in English-to-Chinese translation, or combination of supertag and lexical features in English-to-Dutch subtitle translation. Furthermore, we investigate the applicability of our lexical contextual model in another closely related NLP problem, namely machine transliteration

    syntactic recordering in statistical machine translation

    Get PDF
    Reordering has been an important topic in statistical machine translation (SMT) as long as SMT has been around. State-of-the-art SMT systems such as Pharaoh (Koehn, 2004a) still employ a simplistic model of the reordering process to do non-local reordering. This model penalizes any reordering no matter the words. The reordering is only selected if it leads to a translation that looks like a much better sentence than the alternative. Recent developments have, however, seen improvements in translation quality following from syntax-based reordering. One such development is the pre-translation approach that adjusts the source sentence to resemble target language word order prior to translation. This is done based on rules that are either manually created or automatically learned from word aligned parallel corpora. We introduce a novel approach to syntactic reordering. This approach provides better exploitation of the information in the reordering rules and eliminates problematic biases of previous approaches. Although the approach is examined within a pre-translation reordering framework, it easily extends to other frameworks. Our approach significantly outperforms a state-of-the-art phrase-based SMT system and previous approaches to pretranslation reordering, including (Li et al., 2007; Zhang et al., 2007b; Crego & Mari˜ no, 2007). This is consistent both for a very close language pair, English-Danish, and a very distant language pair, English-Arabic. We also propose automatic reordering rule learning based on a rich set of linguistic information. As opposed to most previous approaches that extract a large set of rules, our approach produces a small set of predominantly general rules. These provide a good reflection of the main reordering issues of a given language pair. We examine the influence of several parameters that may have influence on the quality of the rules learned. Finally, we provide a new approach for improving automatic word alignment. This word alignment is used in the above task of automatically learning reordering rules. Our approach learns from hand aligned data how to combine several automatic word alignments to one superior word alignment. The automatic word alignments are created from the same data that has been preprocessed with different tokenization schemes. Thus utilizing the different strengths that different tokenization schemes exhibit in word alignment. We achieve a 38% error reduction for the automatic word alignmen

    Exact sampling and optimisation in statistical machine translation

    Get PDF
    In Statistical Machine Translation (SMT), inference needs to be performed over a high-complexity discrete distribution de ned by the intersection between a translation hypergraph and a target language model. This distribution is too complex to be represented exactly and one typically resorts to approximation techniques either to perform optimisation { the task of searching for the optimum translation { or sampling { the task of nding a subset of translations that is statistically representative of the goal distribution. Beam-search is an example of an approximate optimisation technique, where maximisation is performed over a heuristically pruned representation of the goal distribution. For inference tasks other than optimisation, rather than nding a single optimum, one is really interested in obtaining a set of probabilistic samples from the distribution. This is the case in training where one wishes to obtain unbiased estimates of expectations in order to t the parameters of a model. Samples are also necessary in consensus decoding where one chooses from a sample of likely translations the one that minimises a loss function. Due to the additional computational challenges posed by sampling, n-best lists, a by-product of optimisation, are typically used as a biased approximation to true probabilistic samples. A more direct procedure is to attempt to directly draw samples from the underlying distribution rather than rely on n-best list approximations. Markov Chain Monte Carlo (MCMC) methods, such as Gibbs sampling, o er a way to overcome the tractability issues in sampling, however their convergence properties are hard to assess. That is, it is di cult to know when, if ever, an MCMC sampler is producing samples that are compatible iii with the goal distribution. Rejection sampling, a Monte Carlo (MC) method, is more fundamental and natural, it o ers strong guarantees, such as unbiased samples, but is typically hard to design for distributions of the kind addressed in SMT, rendering an intractable method. A recent technique that stresses a uni ed view between the two types of inference tasks discussed here | optimisation and sampling | is the OS approach. OS can be seen as a cross between Adaptive Rejection Sampling (an MC method) and A optimisation. In this view the intractable goal distribution is upperbounded by a simpler (thus tractable) proxy distribution, which is then incrementally re ned to be closer to the goal until the maximum is found, or until the sampling performance exceeds a certain level. This thesis introduces an approach to exact optimisation and exact sampling in SMT by addressing the tractability issues associated with the intersection between the translation hypergraph and the language model. The two forms of inference are handled in a uni ed framework based on the OS approach. In short, an intractable goal distribution, over which one wishes to perform inference, is upperbounded by tractable proposal distributions. A proposal represents a relaxed version of the complete space of weighted translation derivations, where relaxation happens with respect to the incorporation of the language model. These proposals give an optimistic view on the true model and allow for easier and faster search using standard dynamic programming techniques. In the OS approach, such proposals are used to perform a form of adaptive rejection sampling. In rejection sampling, samples are drawn from a proposal distribution and accepted or rejected as a function of the mismatch between the proposal and the goal. The technique is adaptive in that rejected samples are used to motivate a re nement of the upperbound proposal that brings it closer to the goal, improving the rate of acceptance. Optimisation can be connected to an extreme form of sampling, thus the framework introduced here suits both exact optimisation and exact iv sampling. Exact optimisation means that the global maximum is found with a certi cate of optimality. Exact sampling means that unbiased samples are independently drawn from the goal distribution. We show that by using this approach exact inference is feasible using only a fraction of the time and space that would be required by a full intersection, without recourse to pruning techniques that only provide approximate solutions. We also show that the vast majority of the entries (n-grams) in a language model can be summarised by shorter and optimistic entries. This means that the computational complexity of our approach is less sensitive to the order of the language model distribution than a full intersection would be. Particularly in the case of sampling, we show that it is possible to draw exact samples compatible with distributions which incorporate a high-order language model component from proxy distributions that are much simpler. In this thesis, exact inference is performed in the context of both hierarchical and phrase-based models of translation, the latter characterising a problem that is NP-complete in nature.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore