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Abstract

In Statistical Machine Translation (SMT), inference needs to be performed

over a high-complexity discrete distribution defined by the intersection be-

tween a translation hypergraph and a target language model. This distri-

bution is too complex to be represented exactly and one typically resorts

to approximation techniques either to perform optimisation – the task of

searching for the optimum translation – or sampling – the task of finding a

subset of translations that is statistically representative of the goal distribu-

tion. Beam-search is an example of an approximate optimisation technique,

where maximisation is performed over a heuristically pruned representation

of the goal distribution.

For inference tasks other than optimisation, rather than finding a single

optimum, one is really interested in obtaining a set of probabilistic samples

from the distribution. This is the case in training where one wishes to obtain

unbiased estimates of expectations in order to fit the parameters of a model.

Samples are also necessary in consensus decoding where one chooses from a

sample of likely translations the one that minimises a loss function. Due to

the additional computational challenges posed by sampling, n-best lists, a

by-product of optimisation, are typically used as a biased approximation to

true probabilistic samples. A more direct procedure is to attempt to directly

draw samples from the underlying distribution rather than rely on n-best list

approximations.

Markov Chain Monte Carlo (MCMC) methods, such as Gibbs sampling,

offer a way to overcome the tractability issues in sampling, however their

convergence properties are hard to assess. That is, it is difficult to know

when, if ever, an MCMC sampler is producing samples that are compatible
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with the goal distribution. Rejection sampling, a Monte Carlo (MC) method,

is more fundamental and natural, it offers strong guarantees, such as unbiased

samples, but is typically hard to design for distributions of the kind addressed

in SMT, rendering an intractable method.

A recent technique that stresses a unified view between the two types of

inference tasks discussed here — optimisation and sampling — is the OS∗ ap-

proach. OS∗ can be seen as a cross between Adaptive Rejection Sampling (an

MC method) and A∗ optimisation. In this view the intractable goal distribu-

tion is upperbounded by a simpler (thus tractable) proxy distribution, which

is then incrementally refined to be closer to the goal until the maximum is

found, or until the sampling performance exceeds a certain level.

This thesis introduces an approach to exact optimisation and exact sam-

pling in SMT by addressing the tractability issues associated with the inter-

section between the translation hypergraph and the language model. The

two forms of inference are handled in a unified framework based on the OS∗

approach. In short, an intractable goal distribution, over which one wishes

to perform inference, is upperbounded by tractable proposal distributions.

A proposal represents a relaxed version of the complete space of weighted

translation derivations, where relaxation happens with respect to the incor-

poration of the language model. These proposals give an optimistic view on

the true model and allow for easier and faster search using standard dynamic

programming techniques. In the OS∗ approach, such proposals are used to

perform a form of adaptive rejection sampling. In rejection sampling, sam-

ples are drawn from a proposal distribution and accepted or rejected as a

function of the mismatch between the proposal and the goal. The technique

is adaptive in that rejected samples are used to motivate a refinement of the

upperbound proposal that brings it closer to the goal, improving the rate of

acceptance. Optimisation can be connected to an extreme form of sampling,

thus the framework introduced here suits both exact optimisation and exact
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sampling. Exact optimisation means that the global maximum is found with

a certificate of optimality. Exact sampling means that unbiased samples are

independently drawn from the goal distribution.

We show that by using this approach exact inference is feasible using only

a fraction of the time and space that would be required by a full intersec-

tion, without recourse to pruning techniques that only provide approximate

solutions. We also show that the vast majority of the entries (n-grams) in a

language model can be summarised by shorter and optimistic entries. This

means that the computational complexity of our approach is less sensitive to

the order of the language model distribution than a full intersection would

be. Particularly in the case of sampling, we show that it is possible to draw

exact samples compatible with distributions which incorporate a high-order

language model component from proxy distributions that are much simpler.

In this thesis, exact inference is performed in the context of both hierarchical

and phrase-based models of translation, the latter characterising a problem

that is NP-complete in nature.
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Chapter 1

Introduction

Statistical Machine Translation (SMT) emerged as the predominant approach

to Machine Translation (MT). It frames the task as a machine learning

problem and it relies on statistics to chose amongst a huge set of possible

answers the one which best fits what was previously seen as good translations.

In SMT a model of translational equivalences explains all known corre-

spondences between a source language and a target language. These corre-

spondences are the building blocks of translation, for example, they may

consist of pairs of phrases (Koehn et al., 2003) or pairs of rewrite rules

(Chiang, 2005), which are automatically learnt from parallel corpora, i.e.

bilingual collections of text. Typically this task relies on word-alignments,

word-to-word correspondences in the bilingual corpora, which are also auto-

matically inferred from unlabelled data, for instance via expectation max-

imisation (Brown et al., 1993; Och and Ney, 2003).1 A parameterisation of

the model assigns a score to each possible way of translating an input text

in terms of its building blocks, a sequence of steps called a derivation. This

parameterisation is typically expressed as a linear combination of feature

functions that decompose additively over the sequence of steps in the deriva-

tion. These feature functions are assumed to assess independent aspects of

the correspondences between input and output as established by a derivation.

The linear combination utilises a set of scaling parameters that capture the

relative importance of each feature function, these allow one to optimise the

1Other formulations enable the learning of pairs of phrases or pairs of rewrite rules to
be done directly from unannotated data (Marcu and Wong, 2002; Blunsom et al., 2009).
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model’s accuracy using machine learning algorithms, a task called parameter

estimation (Och, 2003; Kumar and Byrne, 2004). Finally, a decision rule se-

lects out of the space of weighted derivations the one that satisfies a certain

criterion, such as optimality under the parameterisation.2

The most popular decision rule in SMT is the one that searches for the

derivation with maximum score under the parameterisation of the model,

also known as decoding. This task involves searching through a large com-

binatorial space of derivations representing all possible ways of covering the

input yielding a translation. The characteristics of this space depends on the

formalism used to represent translational equivalences and on the choice of

parameterisation. Translational equivalences are typically represented with

finite-state transducers or synchronous context-free grammars. Phrase-based

translation (Koehn et al., 2003) is an instance of the former, and hierarchical

phrase-based translation (Chiang, 2005) is an instance of the latter.

In a more abstract way, decoding involves two steps. First, the model of

translational equivalences is applied to the input, which results in a trans-

lation hypergraph. The derivations in this hypergraph can be weighted to

account for some form of local parameterisation (e.g. phrase/rule translation

probabilities). Second, a Language Model (LM) is used to rescore the deriva-

tions in the hypergraph with respect to the translation strings they define. In

language modelling, a sequence of target words is scored under the assump-

tion that each word is conditionally independent on all but its n−1 preceding

words. Such n-gram LM represents a form of nonlocal parameterisation and

it is equivalent to a weighted finite-state automaton. Formally, rescoring the

derivations in the hypergraph is equivalent to intersecting it with the au-

tomaton that represents the language model (Chiang, 2005; Kumar et al.,

2006; Dyer et al., 2008).

Due to the complexity of the underlying search space, decoding is typically

2For a comprehensive survey refer to (Lopez, 2008).
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CHAPTER 1. INTRODUCTION

done with heuristic search algorithms (Koehn et al., 2003; Chiang, 2007).3

These algorithms are a form of approximate intersection and they operate

by constructing only part of the space of derivations. They are guided by

heuristics that attempt to predict high-scoring derivations while pruning low-

scoring ones. Therefore, they lack formal guarantees.

In hierarchical models, translational equivalence is expressed by a syn-

chronous grammar, which describes a polynomial number of reordering oper-

ators. Thus, intersection with the language model remains one of the biggest

challenges. In phrase-based models, translations are produced from left to

right, while the input is covered in arbitrary order under the constraint that

each input word is translated exactly once. Ensuring this “non-overlapping

constraint” requires an exponential number of states, thus, phrase-based

models can be intractable even before intersection with the language model

(Knight, 1999; Zaslavskiy et al., 2009).

In both cases, sampling has been somewhat neglected. Because the fully

parameterised space of derivations is typically intractable, one cannot easily

normalise the distribution defined by the hypergraph. Recall that normalisa-

tion requires summing over all the exponentially many derivations in the hy-

pergraph. Unfortunately, one cannot easily resort to pruning either, because

this typically introduces arbitrary bias to the distribution changing its pri-

ors. An alternative concerns the use of Markov Chain Monte Carlo (MCMC)

methods, such as Gibbs sampling (Arun et al., 2009, 2010). However, the

accuracy of a Gibbs sampler, and of MCMC methods in general, is hard to

assess and formal guarantees are very loose.

This work addresses exact optimisation (decoding) and sampling in a

unified framework by relying on a form of rejection sampling (Robert and

Casella, 2004), a Monte Carlo (MC) method. In short, an intractable goal

3Although there are successful attempts to perform exact decoding under certain con-
ditions (Chapter 3).
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distribution, over which one wishes to perform inference, is upperbounded by

tractable proposal distributions. A proposal represents a relaxed version of

the complete space of weighted derivations, where relaxation happens with

respect to the incorporation of the language model, and with respect to the

non-overlapping constraint (relevant to phrase-based models only). These

proposals give an optimistic view on the true model and allow for easier and

faster search using standard dynamic programming techniques.

The approach introduced here is based on the OS∗ algorithm (Dymetman

et al., 2012b,a), a technique inspired by rejection sampling. In rejection

sampling, samples are drawn from a proposal distribution and accepted or

rejected as a function of the mismatch between the proposal and the goal.

This technique is adaptive in that rejected samples are used to motivate

a refinement of the upperbound proposal that brings it closer to the goal,

improving the rate of acceptance. Optimisation can be connected to an

extreme form of sampling (Kirkpatrick et al., 1983; Dymetman et al., 2012b),

thus the framework introduced here suits both exact optimisation and exact

sampling. By exact optimisation we mean that the global maximum is

found with a certificate of optimality. By exact sampling we mean that

unbiased samples are independently drawn from the true distribution.

1.1 Hypotheses

Nonlocal parameterisation is one of the most important sources of complexity

in SMT. For example, consider the costly intersection between a translation

hypergraph and a target language model. Pruning turns out as the most

popular way of handling the tractability issues that arise from nonlocal pa-

rameterisation. In sampling, Gibbs sampling offers a way around the need

to represent an intractably large space of solutions, however, it comes with

convergence properties hard to assess.

This thesis advocates for a different approach based on a more funda-
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mental MC method, namely, rejection sampling. Rejection sampling offers

strong guarantees, but it is generally intractable for large multidimensional

discrete distributions. We achieve tractability in incorporating nonlocal pa-

rameterisation by avoiding the explicit intersection with the language model.

We start with a much simpler (and optimistic) view of the LM distribution

that forgets all context histories. This simpler proposal enables dynamic

programming without pruning. We refine this proposal distribution incorpo-

rating selected histories on demand, a type of coarse-to-fine search strategy.

In the case of phrase-based SMT, tractability without limits in distortion

requires further relaxing the search space by removal of the non-overlapping

constraints, which are then added on demand.

The following statements outline the main hypothesis of this work.

H1 A full intersection between a translation hypergraph (hierarchical or

phrase-based) and a target language model aims at incorporating non-

local parameterisation (the LM scores) and represents the goal distri-

bution over which one wishes the perform inference. Explicitly per-

forming this intersection is wasteful, in that most of the interactions

arising from the nonlocal parameterisation are unlikely even on opti-

mistic assessments using simpler upperbounds of the goal.

H2 Not only the space of n-grams that are likely to participate in high

scoring derivations is much smaller than the full language model, but

also they do not need to be incorporated everywhere in the translation

hypergraph. Instead, they can be incorporated in very specific regions

of this space, where edges have high marginal probabilities.

H3 In the context of phrase-based SMT, it is possible to dynamically man-

age the exponential number of states necessary to satisfy the non-

overlapping constraint. Rather than arbitrarily stipulating a distortion
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limit, these constraints can be overlooked at first and added locally on

demand throughout the search.

H4 A rejection sampler obtained for a sufficiently good nonlocal parameter-

isation can be used, with no further increase in complexity, to perform

exact sampling from a model with longer-range dependencies, such as

a higher-order n-gram language model.

1.2 Contributions of this thesis

This thesis makes a number of novel contributions to research with respect to

exact optimisation and exact sampling for both phrase-based and hierarhical

models of translation.

C1 An approach to exact inference in SMT based on the OS∗ algorithm.

The main insight is to lower the complexity associated with the in-

corporation of nonlocal parameterisation, such as the language model

component. We show that a very small subset of all n-grams in a

language model needs to be incorporated before convergence (H1)

Chapter 4 introduces the general method;

Chapter 5 introduces the case of hierarchical phrase-based models;

Chapter 6 introduces the case of phrase-based models.

C2 An algorithm to selectively intersect a hypergraph and an automaton

relying on edge marginals (Section 5.3.2). Although this algorithm is

applied to inference in SMT, it is applicable to other problems, such as

parsing, inference with high-order HMMs and other graphical models.

We show that variable order n-grams can be incorporated only in high-

probability regions of the hypergraph, rather than everywhere (H2).
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C3 Tractable upperbounds on a phrase-based translation lattice without

a distortion limit and a strategy for lazy incorporation of the non-

overlapping constraint on demand (Section 6.2.2). We show that in-

ference can be performed in the absence of a distortion limit with-

out incorporating all the exponentially many constraints that prevent

phrases from overlapping (H3). However, this is only true for very

short sentences (up to 10 words). Nevertheless, these upperbounds are

novel and can be potentially used with other forms of soft incorpora-

tion of non-overlapping constraints, such as recent work on Lagrangian

relaxation has shown.

C4 We show that a rejection sampler designed to achieve a minimum ac-

ceptance rate for a certain nonlocal parameterisation (e.g. a 2-gram

language model) can be used to produce samples from a model param-

eterised with wider-range dependencies (e.g. a 4-gram language model)

at some small cost in acceptance rate (H4).

C5 An efficient computation of an upperbound on a language model distri-

bution on a sentence basis (Section 4.2.2.1).

C6 An efficient procedure to tighten a language model upperbound which

in turn leads to faster convergence (Section 4.2.2.2).

C7 A faster intersection between weighted context-free grammars and weighted

automata relying on an incremental aspect of the algorithm introduced

in Section 4.2 (Section 4.2.3).

1.3 Structure of the thesis

In Chapter 2, we revisit formal concepts and definitions that are necessary

to understand the thesis. First we revisit algebraic operations over weighted

sets, as well as the definition of semiring necessary to generalise several
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algorithms. Then we revisit concepts from automata theory and formal lan-

guages, namely, finite-state automata and context-free grammars, as well as

their generalisations to multiple languages. A formal presentation of these

machines is essential to the developments of this thesis. A uniform graphical

representation of these formalism is also revisited. This hypergraph represen-

tation allows to unify important operations, such as weighted intersection,

and inference algorithms, such as Inside-Outside. We also give a quick intro-

duction to SMT (Section 2.4).

In Chapter 3, we survey related work on semiring-generalised inference

algorithms and the state-of-the-art in terms of inference in SMT, includ-

ing techniques based on beam-search, cube-pruning, Gibbs sampling and La-

grangian relaxation.

Chapters 4, 5 and 6 present this work’s novel contributions. Chapter

4 introduces a novel framework for exact inference in SMT based on the

OS∗ algorithm. We first revisit the OS∗, then introduce an OS∗ approach to

optimisation and sampling in SMT. Chapter 5 introduces the case of hierar-

chical phrase-based SMT with our new algorithm. We revisit in details the

intersection between grammars and automata and describe our contributions

towards obtaining faster and more compact intersections. Chapter 6 intro-

duces the case of phrase-based SMT in which we also deal with the harder

problem of decoding without a distortion limit, falling back to the original

NP-complete formulation of phrase-based SMT.

Finally, Chapter 7 concludes this thesis with a summary of findings and

a discussion about directions for future work including: speed ups in inter-

section and exact sampling with arbitrary nonlocal parameterisation, such

as features that require a complete derivation in order to be assessed.
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Chapter 2

Background

This chapter revisits concepts and definitions that are central to the develop-

ments discussed in this thesis. In Section 2.1, we revisit algebraic operations

over weighted sets, as well as the definition of semiring necessary to generalise

several inference algorithms. Then in Section 2.2, we revisit concepts from

automata theory and formal languages, namely, finite-state automata and

context-free grammars, as well as their generalisation to multiple languages.

A uniform graphical representation of these formalism is revisited in Section

2.3. This hypergraph representation allows to unify important operations,

such as weighted intersection, and inference algorithms, such as the Inside-

Outside algorithm. Finally, Section 2.5 revisits an abstract formulation of

SMT in terms of an algebra of weighted sets and relations.

2.1 Algebraic preliminaries

This section presents a formal definition of the most important structures and

operations discussed in this thesis. We deliberately use a similar notation

to those in (Goodman, 1998; Nederhof and Satta, 2008a; Mohri, 2009; Dyer,

2010).

2.1.1 Semirings

A semiring K is an algebraic structure denoted by a 5-tuple 〈K,⊕,⊗, 0̄, 1̄〉.
It consists of a set K (e.g. N, Z, R, {0, 1}, etc.) equipped with two binary

operations. One operation, whose operator is ⊕, is called addition. The
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addition is commutative (i.e. a⊕ b = b⊕ a) and has identity 0̄ (i.e. 0̄⊕ a =

a⊕ 0̄ = a). The other operation, whose operator is ⊗, is called multiplication.

The multiplication is associative (i.e. (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)) and has

identity 1̄ (i.e. 1̄ ⊗ a = a ⊗ 1̄ = a).1 Moreover, multiplication left and

right distributes over addition (i.e. a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c)). Finally, the addition identity 0̄ is the

multiplicative annihilator (i.e. 0̄⊗ a = a⊗ 0̄ = 0̄).

Table 2.1 lists a number of popular semirings, including different names by

which they are known. The operator ⊕log is such that x⊕log y = − log(e−x +

e−y). A commutative semiring is such that the multiplication is commutative.

The semirings in Table 2.1 are all commutative. An idempotent semiring is

such that the addition is idempotent (i.e. a ⊕ a = a). In Table 2.1, the

binary, the artic and the tropical semirings are idempotent.

Semiring K ⊕ ⊗ 0̄ 1̄
Binary {true, false} ∨ ∧ true false
Counting N + × 0 1
Sum-times (log) R ∪ {−∞,+∞} ⊕log + +∞ 0
Max-times (artic) R ∪ {−∞} max + −∞ 0
Min-times (tropical) R ∪ {+∞} min + +∞ 0

Table 2.1: Example of semirings

Inference algorithms have different interpretations when operating under

different semirings. Goodman (1999) introduces semiring parsing for proba-

bilistic context-free grammars. Li and Eisner (2009) introduce semirings to

compute first and second-order expectations using the Inside-Outside algo-

rithm. Kumar et al. (2009) introduce a semiring named the “upper-envelop

semiring” and show that Minimum Error Rate Training (MERT) (Och, 2003)

is equivalent to running the Inside algorithm with that semiring.

1To avoid confusion with standard addition and multiplication, throughout the text we
write ⊕-sum and ⊗-product meaning “sum using ⊕” and “product using ⊗”, respectively.
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2.1.2 Weighted sets

A weighted set generalises a standard set in that elements of the former

are assigned weights. Examples of weighted sets are weighted finite-state

automata and weighted context-free grammars. They compactly represent

(possibly infinite) elements, such as the space of sentences in a language,

while assigning them weights. The interpretation of these weights depends

on the choice of semiring. For instance, they might represent the probability

that a string is expected to be well-formed.

Formally, a weighted set A = 〈X,w〉 over semiring K is a pair of a

(standard) set X and a weight function w : X → K that assigns a weight to

each element in X.

It is also convenient to define weighted sets of pairs of elements, where

a pair expresses a form of input-output relation. This particular type of

weighted set is called a weighted binary relation. Examples of weighted bi-

nary relations are weighted finite-state transducers and weighted synchronous

context-free grammars. They compactly represent (possibly infinite) ele-

ments, such as the bilingual correspondences between two languages, while

assigning them weights. As expected, the interpretation of the weights de-

pends on the choice of semiring. For instance, they might represent the

probability that an output string translates an input string.

Formally, a weighted binary relation B = 〈R ⊆ X × Y, u〉 is a weighted

set over semiring K where items are mappings of elements of a domain X

onto elements of a codomain Y with weight function u : R→ K.

Sometimes a weighted set S = 〈X, u〉 will be treated as a weighted bi-

nary relation. In such cases we mean the relation S = 〈{(x, x) : x ∈
X}, w(x, x) = u(x)〉. Following Dyer (2010), we will call S an identity-

transducer and the word transducer will refer to either a Weighted Finite-

State Transducer (wFST) or a Weighted Synchronous Context-Free Gram-
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mar (wSCFG), depending on the context.2

2.1.3 Operations over weighted sets

This section revisits important operations over weighted sets. We discuss

the intersection between weighted sets in Section 2.1.3.1. In Section 2.1.3.2,

we define the difference between a weighted set and an unweighted set. The

last two operations concern weighted binary relations. In Section 2.1.3.3,

we discuss the composition of two weighted binary relations. Finally, we

define the weighted projection of a binary relation onto one of its dimensions

(Section 2.1.3.4).

2.1.3.1 Intersection

Intuitively, the intersection between weighted sets is very similar to the in-

tersection between standard (unweighted) sets. In the standard case, given

two sets, the intersection retains only the elements that are common to both

input sets. In the weighted case, additionally, the elements retained by the

intersection are weighted by the product of their original weights in each

input set.

Formally, given the weighted sets 〈A, u〉 and 〈B, v〉 over semiring K, the

weighted intersection 〈A, u〉 ∩ 〈B, v〉 = 〈C,w : C → K〉 is such that: C =

A ∩B = {x : x ∈ A ∧ x ∈ B} and

w(x) =

 u(x)⊗ v(x) if x ∈ A ∧ x ∈ B
0̄ otherwise.

That is, if an element x is common to A and B, x is retained in C and it

is weighted by the ⊗-product u(x)⊗ v(x). Any other element weights 0̄.

2For clarity, we use different typesets to refer to weighted sets and weighted binary

relations. Moreover, if a weighted set S has been defined, S will refer to its identity-

transducer.
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2.1.3.2 Difference

Intuitively, the difference between two sets A−B is an operation that removes

from A elements that belong to B. For weighted sets over semiring K,

this operation would require K to define a negation operator 	, however,

recall from the definition in Section 2.1.1 that a semiring requires only two

operators, namely, ⊕ and ⊗.3

Formally, the difference operation can be defined for a weighted set 〈A ⊆
X, u〉 and an unweighted set B ⊆ X. The result is the weighted set 〈D,w〉
such that D = {x ∈ X : x ∈ A ∧ x /∈ B} and

w(x) =

 u(x) if x ∈ A ∧ x /∈ B
0̄ otherwise.

The difference can also be defined in terms of the intersection between

two weighted sets, namely, 〈A ⊆ X, u〉 and 〈C = X \B, v〉, where the latter

is called the complement of B in X. The complement contains the elements

of X that do not belong to B, that is, C = {x ∈ X : x /∈ B}. These elements

are weighted so that v(x) = 1̄ if x ∈ C, and v(x) = 0̄ otherwise. Therefore,

one can write the following equivalences

〈A ⊆ X, u〉 −B = 〈A ⊆ X, u〉 ∩ 〈C = X \B, v〉 = 〈A \B ⊆ X,w〉

where w(x) = u(x)⊗ v(x).

2.1.3.3 Composition

The weighted composition is the generalisation of weighted intersection for

weighted binary relations. Consider two weighted binary relations A =

〈RA ⊆ X × Y, u〉 and B = 〈RB ⊆ Y × Z, v〉, where the domain of B (its

3Note that for some semirings the negation operator does make sense, e.g. the Boolean

semiring.
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input) is the codomain of A (its output). Intuitively, the weighted composi-

tion operates over the two sets abstracting away the elements of Y . That is,

the composed relation maps directly from X to Z implicitly pivoting through

elements in Y .

Formally, the weighted composition A ◦ B defines a binary relation C =

〈RC ⊆ X × Z,w〉 such that C = {(x, z)|∃y ∈ Y : (x, y) ∈ RA ∧ (y, z) ∈ RB}
and

w(x, z) =


⊕
y∈Y

(x,y)∈RA
(y,z)∈RB

u(x, y)⊗ v(y, z) if (x, y) ∈ RA ∧ (y, z) ∈ RB

0̄ otherwise.

That is, the elements y ∈ Y for which (x, y) ∈ RA and (y, z) ∈ RB are

pivots that enable the direct mapping (x, z). The pair (x, z) is weighted by

the ⊕-sum over the ⊗-product of the pairs involving the pivot elements. In

the context of probabilistic inference, this operation can be thought of as

marginalising out a latent variable.

2.1.3.4 Projection

Given a weighted binary relation B = 〈R ⊆ X × Y, u〉 over semiring K, the

projection of B onto its codomain (also denoted output projection) is the

weighted set B ↓= 〈R, u〉 ↓= 〈A,w〉, such that A = {y|∃x ∈ X : (x, y) ∈ R}
and w(y) =

⊕
x∈X:(x,y)∈R u(x, y).

The projection is itself a weighted set, where the weight of an item y is the

⊕-sum of u(x, y) over all possible values of the input item x. In the context

of probabilistic inference, this operation can be thought of as summing over

all possible values X of a random variable.

It is then straightforward to define the input projection, or projection

onto the domain, which is denoted by B ↑= 〈R, u〉 ↑, and ⊕-summation
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happens over y ∈ Y : (x, y) ∈ R.

2.2 Automata and grammars

In this section we revisit two tractable representations of weighted sets and

their generalisations to weighted binary relations. There are several equiv-

alent ways in which this presentation could be done without altering the

expressiveness of the machinery discussed. We opt to mostly follow the pre-

sentation in (Dyer, 2010) due to its algebraic groundings.

2.2.1 Weighted finite-state automata

Informally, a Weighted Finite-State Automaton (wFSA) is made of a set of

states connected by transitions, which in turn recognise (or accept) symbols

of a given vocabulary (or alphabet), assigning them weights. A valid string,

that is, a string recognised by the Weighted Finite-State Automaton (wFSA),

is such that it can be associated to at least one sequence of transitions de-

parting from an initial state of the wFSA and arriving at a final state of the

wFSA. We call such sequence of transitions a (valid) path in the wFSA. The

total weight assigned to any given string is the sum over all paths recognis-

ing that string. Additionally, initial and final states are themselves weighted,

and those weights contribute to the weight of every valid path.

Formally, a weighted finite-state automaton over semiring K is defined

as a 5-tuple A = 〈Σ, Q, 〈I, λ〉, 〈F, ρ〉, 〈E,w〉〉 where:

• Σ is a finite set of terminal symbols, also known as alphabet or vocab-

ulary;

• Q is a finite set of states;

• 〈I, λ〉 is a finite weighted set of initial states I ⊆ Q with weight function

λ : I → K;
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• 〈F, ρ〉 is a finite weighted set of accepting (final) states F ⊆ Q with

weight function ρ : F → K;

• 〈E,w〉 is a finite weighted set of transitions (or edges) E ⊆ (Q×Σ×Q)

with weight function w : E → K.

A transition e ∈ E connects two states in Q, one being its origin state,

denoted by p[e], another being its destination state, denoted by n[e]. More-

over it recognises a symbol from Σ, denoted by i[e] and often called an input

symbol, and it carries a weight in K, denoted by w(e).

A path in a wFSA is a sequence of l adjacent transitions denoted by π =

〈e1, e2, . . . , el〉, where ei ∈ E, and by adjacency we mean that n[ei] = p[ei+1]

for i ∈ [1, l − 1]. A path can be inspected in terms of (1) its first state

p[π] = p[e1], that is, the origin state of its first transition; (2) its last state

n[π] = n[el], that is, the destination state of its last transition; (3) the string

i[π] = 〈i[e1], i[e2], . . . , i[el]〉 ∈ Σ∗ it recognises, that is, the concatenation of

the input symbols of the transitions along the path; and finally, (4) its weight

w[π] =
⊗l

i=1 w(ei), that is, the ⊗-product of the weights of the transitions

along the path.

To understand the set of strings over the vocabulary Σ defined by a wFSA,

its language, let P (o, d) be the set of all paths from a state o ∈ Q to a state

d ∈ Q. We can then restrict P (o, d) to paths that recognise a specific string

x ∈ Σ∗, and denote it by P (o, x, d) = {π ∈ P (o, d) : i[π] = x}. Finally this

set can be generalised to account for a set O of origin states and a set D of

destination states, that is, P (O ⊆ Q, x,D ⊆ Q) =
⋃
o∈O∧d∈D P (o, x, d).

With these definitions we have enough to formalise the set of strings that

represents the language L(A) ⊆ Σ∗ of the automaton A:

L(A) = {x ∈ Σ∗ : P (I, x, F ) 6= ∅} ⊆ Σ∗

these are all strings in Σ∗ for which there is at least one path in A connecting
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one of its initial states to one of its final states. A wFSA therefore defines a

weighted set 〈L(A), u〉 in K with weight function given by Equation 2.1.

u(x) =


0̄ if P (I, x, F ) = ∅⊕
π∈P (I,x,F )

λ(p[π])⊗ w[π]⊗ ρ(n[π]) otherwise. (2.1)

Note in Equation 2.1 that when P (I, x, F ) = ∅, there is no valid path in

A that recognises x, and the weight assigned to x is, thus, 0̄. Otherwise, the

weight assigned to x is the ⊕-sum over all paths that recognise x. Also note

that the weight of a valid path is ⊗-multiplied by the weights of its initial

and its final state.

2.2.2 Weighted finite-state transducers

A Weighted Finite-State Transducer (wFST) generalises a wFSA to jointly

recognise strings from multiple vocabularies. One can think of vocabularies

as different dimensions, and wFSTs the multi-dimensional versions of wFSAs,

where strings are recognised in parallel across dimensions. In this thesis we

will focus on bilingual wFSTs, where one vocabulary concerns an input (or

source) language, and will be referred to as the input (or source) vocabulary,

and another concerns an output (or target) language, being referred to as

the output (or target) vocabulary.

Formally, a weighted finite-state transducer over semiring K is defined as

a 6-tuple T = 〈Σ,∆, Q, 〈I, λ〉, 〈F, ρ〉, 〈E,w〉〉 where we extend the definition

in Section 2.2.1 to account for an additional set of terminal symbols ∆, the

output vocabulary, and change 〈E,w〉 to the finite weighted binary relation

E ⊆ (Q× Σ×∆×Q) with weight function w : E → K.

A transition e ∈ E describes a jump from an origin state to a destination

state, it now takes simultaneously two symbols, an input symbol from Σ
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denoted by i[e], and an output symbol from ∆ denoted by o[e], and it is

associated to a weight w(e) in K.

Just like in the wFSA case, a path π is defined as a sequence of l ad-

jacent transitions, and it can be inspected in terms of p[π], n[π], i[π], and

w[π] as defined in Section 2.2.1. Additionally, the path recognises (or pro-

duces) the output string o[π] = 〈o[e1], o[e2], . . . , o[el]〉, which is made of the

concatenation of the output symbols at each transition along the path.

We can also define P (o, x, y, d) = {π ∈ P (o, d) : i[π] = x ∧ o[π] = y},
where o ∈ Q, d ∈ Q, x ∈ Σ∗ and y ∈ ∆∗, the set of all paths from an origin

state o to a destination state d that accept the pair of strings (x, y). The

generalisation P (O ⊆ Q, x, y,D ⊆ Q) follows straightforwardly.

With these definitions we have enough to formalise the set of pairs of

strings that represents the language L(T ) ⊆ Σ∗ ×∆∗ of the transducer T :4

L(T ) = {(x, y)|x ∈ Σ∗, y ∈ ∆∗ : P (I, x, y, F ) 6= ∅} ⊆ Σ∗ ×∆∗

these are all pairs of strings in Σ∗×∆∗ for which there is at least one path in T
connecting one of its initial states to one of its final states. A wFST therefore

defines a weighted binary relation 〈L(T ), u〉 in K with weight function given

by Equation 2.2.

u(x, y) =


0̄ if P (I, x, y, F ) = ∅⊕
π∈P (I,x,y,F )

λ(p[π])⊗ w[π]⊗ ρ(n[π]) otherwise.

(2.2)

Note that the weight function is defined over pairs of strings. To rea-

son about output strings independently from the input strings, one needs

to marginalise out, or ⊕-sum over, the input strings that project onto the

same output string, and similarly vice-versa, an operation called output (or

4With certain abuse of language, we call the set of pairs of strings recognised by a

wFST its language, in analogy to the terminology used for wFSAs.
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input) projection (see Section 2.1.3.4). For a detailed overview on finite-

state transducers and their operations, including algorithms, refer to (Mohri,

2009).

2.2.3 Weighted context-free grammars

Informally, a Weighted Context-Free Grammar (wCFG) is a rewrite system

made of a set of rules defined over a set of variables and an alphabet of

terminal symbols. The rules describe how variables can be rewritten, one at

a time from left to right, regardless of context, into sequences of variables

and symbols of the alphabet. A sequence of rewrite operations that leads to

all variables being expanded yielding a string of symbols of the alphabet is

known as a derivation. Rules are associated to weights and the total weight

of a derivation is the product of its rules. Finally, the total weight of a string

recognised (or produced) by the grammar is the sum over all derivations

that yield that string. It is intuitive to think of Weighted Context-Free

Grammars (wCFGs) bottom-up, that is, we start with a string of terminal

symbols and group blocks within this string under variables, each block being

directly below a single variable. Sequences of variables and blocks of strings

get combined under other variables, creating a tree structure, up to the point

that a single variable is proven at the top of the tree. The tree itself represents

a derivation and the top variable is also called root.

Formally, a weighted context-free grammar over semiring K is defined as

a 4-tuple G = 〈Σ, V, 〈S, σ〉, 〈R, ν〉〉 where:

• Σ is a finite set of terminal symbols (the alphabet);

• V is a finite set of nonterminal symbols (or variables), and Σ ∩ V = ∅;

• 〈S, σ〉 is a finite weighted set of start (or root) symbols S ⊆ V with

weight function σ : S → K;
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• 〈R, ν〉 is a finite weighted set of context-free rewrite rules (or pro-

ductions). More specifically, a weighted binary relation, where R ⊆
V × (V ∪ Σ)∗ with weight function ν : R→ K;

A rule r ∈ R can be inspected in terms of (1) its left-hand side, a sin-

gle nonterminal symbol, denoted by LHS[r] ∈ V ; (2) its right-hand side

(or yield), a sequence of terminal and nonterminal symbols, denoted by

RHSi[r] ∈ (V ∪ Σ)∗;5 (3) the number of nonterminal symbols in its yield,

its arity, denoted by a[r]; and finally, (4) its weight ν(r) in K. A rule r can

be written LHS[r] −→
νr

RHSi[r], where the weight νr might be omitted if not

relevant to the point being made.

To understand how rules are applied consider two sequences u and v of

terminals and nonterminals symbols, that is, u, v ∈ (V ∪ Σ∗). We then say

that u yields v if, and only if, there exists a rule α → β in R, therefore,

α ∈ V and β ∈ (V ∪ Σ∗), such that u = u1αu2 and v = u1βu2, where

u1 ∈ Σ∗ is a terminal prefix to nonterminal α, and u2 is a sequence in

(V ∪ Σ∗). Note that because u1 must be a sequence of terminal symbols,

the rule application rewrites the left-most nonterminal α in u, thus each

derivation can only produce one tree. In short, we write u
α→β
==⇒ v and read

u yields v by application of rule α→ β.

A derivation δ = 〈r1, r2, . . . , rl〉 ∈ R is made of l successive rule applica-

tions, resulting in a string of terminals, that is, LHS[r1]
r1=⇒ (V ∪Σ)∗

r2=⇒ · · · rl=⇒
Σ∗, or in short LHS[r1]

δ
=⇒ Σ∗. We can inspect a derivation in terms of (1) its

root symbol LHS[δ], which is the left-hand side of its first rule LHS[r1]; (2)

its yield RHSi[δ] ∈ Σ∗, which is the string resulting of all l rule applications,

starting from the root; and finally, (3) its weight ν[δ] =
⊗l

i=1 ν(ri), obtained

by ⊗-multiplying the weights of the rules in δ.

Similarly to what was done with wFSAs, we can talk about special groups

5The index i in RHSi[r] stands for input. Its need will become obvious in Section 2.2.4,

when wCFGs are generalised into wSCFGs.
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of derivations. The set of all derivations rooted at nonterminal q ∈ V is

written D(q) = {δ ∈ R∗ : LHS[δ] = q}. Thus, D(q, x) = {δ ∈ R∗ : LHS[δ] =

q ∧ RHSi[δ] = x}, where q ∈ V , is the set of all derivations rooted at q that

yield the string x ∈ Σ∗. The generalisation of D(q, x) to a set of roots Q ⊆ V

is straightforward: D(Q, x) =
⋃
q∈QD(q, x).

We can now formalise the set of strings in the language L(G) recognised

by the grammar G:

L(G) = {x ∈ Σ∗ : D(S, x) 6= ∅}

these are all strings in Σ∗ for which there is at least one derivation in R∗

rooted at a start symbol in S. A wCFG therefore defines a weighted set

〈L(G), w〉 in K with weight function given by Equation 2.3.

w(x) =


0̄ if D(S, x) = ∅⊕
δ∈D(S,x)

σ(LHS[δ])⊗ ν[δ] otherwise. (2.3)

Note in Equation 2.3 that when D(S, x) = ∅, there is no derivation in G

that recognises x, and the weight assigned to x is, thus, 0̄. Otherwise, the

weight assigned to x is the ⊕-sum over all derivations that recognise x. Also

note that the weight of a valid path is ⊗-multiplied by the weight of its start

symbol.

2.2.4 Weighted synchronous context-free grammars

In the same way that wFSTs generalise wFSAs, a Weighted Synchronous

Context-Free Grammar (wSCFG) generalises a wCFG to jointly recognise

strings from multiple vocabularies. Informally, one can think of a wSCFG

as two CFGs, one over an input vocabulary and the other over an output

vocabulary, that share a set of nonterminal variables, and where a production

in either one of them is paired with a production in the other with a one-to-

one correspondence between nonterminals (hence the term synchronous).
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Numerous formalism related to wSCFGs have been proposed (Lewis and

Stearns, 1968; Aho and Ullman, 1969; Wu, 1995, 1997; Melamed, 2003; Chi-

ang, 2005, 2007). Lewis and Stearns (1968) were probably the first to intro-

duce a bilingual generalisation of CFGs, which they called Syntax-Directed

Transducer (STD). Wu (1995, 1997) introduces a restrict case of the more

general wSCFGs, the Inversion Transduction Grammar (ITG), where non-

terminals in output rules either preserve or invert the orientation of the in-

put. Chiang (2005) renamed the syntax-directed transducers to synchronous

context-free grammars, a term which probably better conveys what they are.6

Melamed (2003) introduced Multitext Grammars (MTGs), a generalisation

of wSCFGs which handles an arbitrary number of dimensions.

Aho and Ullman (1969) formalised synchronous rules as α → 〈β, γ,Π〉,
where α is a nonterminal symbol from a shared set of variables, β is a sequence

of nonterminals and input terminals, γ is a sequence of nonterminals and

output terminals, and Π is a permutation function Π : {1, a[β]} → {1, a[β]}
that defines the one-to-one mapping between variables in β and variables in

γ (β and γ always have the same number of variables). In other words, the

ith variable in β corresponds to the Π(i)th variable in γ. In (Chiang, 2005),

the permutation function ∼ plays exactly the same role as Π. Dyer (2010)

uses a permutation function only implicitly. Instead, he defines a vocabulary

of indexed gaps which express the one-to-one mapping between variables in

the input right-hand side and the gaps in the output right-hand side.

Formally, a weighted synchronous context-free grammar over semiring

K is defined as a 5-tuple G = 〈Σ,∆, V, 〈S, σ〉, 〈R, ν〉〉 where we extend the

definition in Section 2.2.3 to account for an additional set of terminal symbols

∆, the output vocabulary, and a weighted set 〈R, ν〉 of synchronous rules.

6Chiang (2007) noted that a wSCFG constrained to handling two nonterminals on the

righ-hand side of its synchronous rules is equivalent to an ITG. This constraint facilitates

unsupervised learning of wSCFGs as well as decoding.
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The set V of nonterminal symbols is shared between Σ and ∆, and Σ ∩
V = ∆ ∩ V = ∅. A synchronous rule α → 〈β, γ〉 in R expresses a relation

between a common left-hand side nonterminal α ∈ V and a pair 〈β, γ〉 of

rewrite rules (the input and the output right-hand side of the rule). The

input β ∈ (V ∪ Σ)∗ is a sequence of nonterminals and input terminals. The

output γ ∈ ({ 1 , 2 , . . .} ∪ ∆)∗ is a sequence of indexed gaps and output

terminals, such that the number a[γ] of indexed gaps in γ is equal to the

number a[β] of variables in β. These gaps are positions that range from 1

to a[γ] with no repetition, and they may show in γ in any order. Moreover,

they realise a one-to-one correspondence to nonterminals in β. Dyer (2010)

introduced this formulation and named it a gap correspondence constraint,

which implicitly shares the role of the permutation function in (Aho and

Ullman, 1969; Chiang, 2005). A rule r ∈ R, where R ⊆ V × (V ∪ Σ)∗ ×
({ 1 , 2 , . . .} ∪Σ)∗, can also be written LHS[r] −→

νr
〈RHSi[r],RHSo[r]〉, where

RHSo[r] ∈ ({ 1 , 2 , . . .}∪∆)∗ represents the output right-hand side (or output

yield).

To understand rule application, first consider the function

Yk : ({ 1 , 2 , . . .} ∪∆)∗ → ({ 1 , 2 , . . .} ∪∆)∗

that takes a sequence of indexed gaps and output terminals, and adds k

to the index of every gap, for example Y−1(a 2 b) = a 1 b. Then for

u, v ∈ (V ∪ Σ)∗ and x, y ∈ ({ 1 , 2 , . . .} ∪ ∆)∗, we say 〈u, x〉 yields 〈v, y〉,
both pairs observing the correspondence constraints, if, and only if, there

exists a rule α→ 〈β, γ〉 in R such that 〈u, x〉 = 〈u1αu2, x1 1 x2〉 and 〈v, y〉 =

〈u1βu2, Ya[β]−1(x1)γYa[β]−1(x2)〉, where u1 ∈ Σ∗ , u2 ∈ (V ∪ Σ)∗, and x1, x2 ∈
({ 1 , 2 , . . .} ∪∆)∗. Note that u1 is a sequence of input terminals, that is, α

is the left-most variable in u, and as a consequence, replacing α by β in u

requires replacing 1 by γ in x. Moreover, because rule application always

substitutes 1 , every indexed gap in x1 and x2 can only refer to a variable to

the right of α in u. If the rule rewrites α (one nonterminal) using terminals
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only (i.e. a[β] = 0), the indexes must be reduced by 1 in x1 and in x2 (and

y is one nonterminal shorter than x). If α is rewritten using a sequence

containing one nonterminal (i.e. a[β] = 1), then the indexes will remain

unchanged (a[x] = a[y]). Finally, if the rewrite introduces a sequence with

m + 1 nonterminals (i.e. a[β] = m + 1) and m > 0, the indexes must be

increased by m (y is m nonterminals longer than x). The function Ya[β]−1

compactly updates the indexed gaps maintaining 〈v, y〉 well-formed.

A derivation δ = 〈r1, r2, . . . , rl〉 ∈ R is made of l successive rule appli-

cations, resulting in a pair of terminal strings, that is, LHS[r1]
r1=⇒ 〈(V ∪

Σ)∗, ({ 1 , 2 , . . .} ∪∆)∗〉 r2
=⇒ · · · rl=⇒ 〈Σ∗,∆∗〉, or in short LHS[r1]

δ
=⇒ 〈Σ∗,∆∗〉.

In addition to what was defined in Section 2.2.3, we can inspect a deriva-

tion in terms of the output string it recognises (or produces), denoted by

RHSo[δ] ∈ ∆∗. We can then extend D(q, x) to D(q, x, y) = {δ ∈ R∗ :

LHS[δ] = q ∧ RHSi[δ] = x ∧ RHSo[δ] = y}, which is the set of all deriva-

tions rooted at q ∈ V that yield the pair of strings 〈x ∈ Σ∗, y ∈ ∆∗〉. The

generalisation to D(Q ⊆ V, x, y) =
⋃
q∈QD(q, x, y) follows straightforwardly.

We can now formalise the set of pairs of strings in the language L(G)

recognised by the synchronous grammar G:

L(G) = {(x, y) ∈ Σ∗ ×∆∗ : D(S, x, y) 6= ∅}

these are all pairs of strings in Σ∗×∆∗ for which there is at least one derivation

in R∗ rooted at a start symbol in S. A wSCFG therefore defines a weighted

binary relation 〈L(G), w〉 in K with weight function given by Equation 2.4.

w(x, y) =


0̄ if D(S, x, y) = ∅⊕
δ∈D(S,x,y)

σ(LHS[δ])⊗ ν[δ] otherwise. (2.4)

Just like in the case of wFSTs, the weight function is defined over pairs

of strings and to reason about output strings independently one needs to

⊕-sum over the input strings that project onto the same output string.
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2.3 Hypergraphs

Informally, hypergraphs are generalisation of graphs where hyperedges —

the generalisation of edges — have multiple origins and multiple destina-

tions. They have been widely used to compactly represent weighted sets

and relations — exponentially many items can be represented in polynomial

space. They are compatible with numerous formalism from automata theory

and formal languages.

Formally, a weighted directed hypergraph (Gallo et al., 1993) is a pair

〈〈V, φ〉, 〈E,w〉〉, where 〈V, φ〉 is a weighted set of vertices (or nodes) and

φ : V → K, and 〈E,w〉 is a weighted set of hyperedges and w : E ⊆
(V ∗ × V ∗) → K. A hyperedge e ∈ E is an ordered pair (H ⊆ V ∗, T ⊆ V ∗)

which relates two lists of vertices, the head H, also denoted h[e], and the tail

T , also denoted t[e].7 A hyperedge is directed, vertices in the tail precede

vertices in the head.

In Natural Language Processing (NLP), particularly, a specific class of

directed hypergraphs, the backward hypergraphs (or simply B-hypergraphs),

is widely used to represent in a unified framework finite-state automata and

context-free grammars, as well as their multidimensional generalisations. A

B-hypergraph 〈〈V, φ〉, 〈E,w〉〉 is a directed hypergraph in which all hyper-

edges are backward edges (B-edges). A B-edge is a hyperedge headed by a

single node, that is, E ⊆ V × V ∗, thus |h[e]| = 1 for e ∈ E.

Let H = 〈〈V ′, φ〉, 〈E,w〉〉 and G = 〈Σ, V, 〈S, σ〉, 〈R, ν〉〉 be a B-hypergaph

and a wCFG, respectively. With (1) conveniently chosen 〈V ′, φ〉, such that

V ′ = Σ ∪ V , and φ(q) = σ(q) if q ∈ S ⊆ V , and 1̄ otherwise; also (2)

by choosing 〈E,w〉, so that E ⊆ V × (Σ ∪ V )∗, thus an edge e ∈ E is an

ordered pair e = 〈v0, 〈v1, . . . , vn〉〉, where h[e] = v0 ∈ V is the head, and

t[e] = 〈v1, . . . , vn〉 is the tail; and finally, (3) by choosing w so that w(e) =

7In (Gallo et al., 1993), H and T are sets of vertices, however, it is common to extend

that definition and treat H and T as lists or ordered multisets.
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ν(h[e] → t[e]), we can see that a B-hypergraph is completely equivalent to

a wCFG. Nodes heading edges are equivalent to nonterminals, V = {v ∈
V ′ : ∃e ∈ E, h[e] = v}, and nodes that do not head edges are equivalent to

terminals, Σ = {v ∈ V ′ : @e ∈ E, h[e] = v}. It is also convenient to have

a single goal node vg in the hypergraph, such that {e ∈ E : vg ∈ t[e]} = ∅,
which is straightforward to do.

Observe that B-hypergraphs where |t[e]| = 1 for every edge e ∈ E are

equivalent to directed graphs used to represent wFSAs (Dyer, 2010; Rush

et al., 2013). This is a consequence of the fact that regular languages, those

defined by finite-state automata, are included in the set of context-free lan-

guages (Hopcroft and Ullman, 1969, 1979). This means that hypergraphs

make a very useful tool to handle wFSAs and wCFGs more uniformly and

to have unified algorithms for both classes of machinery.

The B-edge e is equivalent to a context-freee rewrite rule r, where w(e) =

ν(r), h[e] = LHS[r] and t[e] = RHS[r]. Moreover for multidimensional B-

hypergraphs — a generalisation equivalent to a wSCFG — let us also write

i[e] = RHSi[r] and o[e] = RHSo[r]. Figure 2.1a illustrates the hypergraph

that is equivalent to the SCFG in Figure 2.1b. In Figure 2.1a, terminal nodes

are omitted, instead, they are shown as labels on edges. The forward slash

separates the input dimension from the output dimension. The double circle

represents the goal node. Finally, a boxed number indicates the position of

a corresponding nonterminal node in the tail of the edge.

To relate to the terminology previously used with wCFGs, vertices (or

nodes) are equivalent to nonterminals, goal vertices are equivalent to start

symbols, and hyperedges are equivalent to rewrite rules. Also connecting

with the terminology used for wFSAs, states become vertices, final states

are goal vertices and edges are transitions linking one origin state (the tail

of the edge) to one destination state (the head of the edge). From now on,

let us refer to B-hypergraphs simply as hypergraphs. Similarly, let us refer
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B → presidente president

(b) Synchronous rules

Figure 2.1: B-hypergraphs and context-free grammars

to hyperedges simply as edges. The terms vertex, node and nonterminal

will be used as synonymous; also the terms edge and rule, and the terms

goal node and root. A path in a hypergraph will be also called a derivation.

Finally, for a node q, the backward star of q is the set of incoming edges to q,

BS(q) = {e ∈ E : h[e] = q}, and the forward star of q is the set of outgoing

edges from q, FS(q) = {e ∈ E : q ∈ t[e]} (Gallo et al., 1993). In grammar

parlance, BS(q) is the set of all rules whose left-hand side is the nonterminal

q, and FS(q) is the set of all rules that use q in their right-hand sides.

2.4 Statistical machine translation

The task of producing a translation for a string x over an input vocabulary

is typically associated to finding the best derivation d∗ compatible with the

input under a linear model. Where a derivation is a structured output that

represents a sequence of steps that covers the input producing a translation.
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This processes, also known as decoding, is illustrated in Equation 2.5.

d∗ = argmax
d∈D(x)

f(d,Λ) (2.5)

The set D, also denoted D(x) to stress the dependency on x, is the space

of all derivation compatible with x and supported by a model of translational

equivalences. The function f(d,Λ) = Λ ·H(d), also denoted f(d) for simplic-

ity, is a linear parameterisation of the model. It assigns a real-valued score (or

weight) to every derivation d ∈ D. The score of a derivation does not need

to have a probabilistic interpretation, however, pΛ(d) = exp{f(d,Λ)} can be

seen as an unnormalised probability distribution over D.8 A proper probabil-

ity distribution can be obtained by normalisation p̄Λ(d) = exp{f(d,Λ)}∑
d′∈D exp{f(d′,Λ)} .

The m-dimensional vector of real-valued weights Λ assigns a relative impor-

tance to different aspects of the derivations captured by m feature functions

H(d) = 〈H1(d), . . . , Hm(d)〉 ∈ Rm.

If feature functions are assumed to decompose additively over the steps

in a derivation, the weight of a derivation will be the sum of the weights

of its steps. That is, if Hi(d) =
∑

e∈d hi(e), where hi is a feature func-

tion that assesses steps independently (a.k.a. local feature function) and

d = 〈e1, e2, . . . , el〉 is a sequence of l steps, then each step is assigned a

weight equivalent to w(e) = Λ · h(e), where h(e) = 〈h1(e), h2(e), . . . , hm(e)〉
is a vector of local features. Interpreting weights like that is convenient

in that we can make use of weighted sets and semirings to represent and

operate over these quantities efficiently. However, imposing this structural

independence between steps either restricts feature functions to performing

very local assessments (e.g. assessing an isolated context-free production), or

8This formulation is known as a log-linear model (Och and Ney, 2002; Och, 2003), an

instance of the maximum entropy framework (Berger et al., 1996b). Note that the best

derivation rule shown in Equation 2.5 is a direct application of this model due to the

monotonicity of the exponential function.
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it increases the cost of representing the space of weighted derivations in that

every step must encode all nonlocal dependencies required for assessment

(e.g. assessing a prefix string in the yield of a partial derivation).

The set D is typically finite,9 however, it contains a very large number

of structures — exponential with the size of x — making exhaustive enu-

meration of these solutions prohibitively slow. Only in very restricted cases

combinatorial optimisation techniques are directly applicable, thus it is com-

mon to resort to heuristic techniques in order to find an approximation to d∗.

In some cases the decoding problem is NP-complete — this is the case for a

common model based on a finite-state representation (known as phrase-based

model). Sometimes there exists an algorithm which terminates in polynomial

time, but this algorithm is too slow to be practicable — this is the case for a

type of model based on a context-free representation (known as hierarchical

phrase-based model).

Finding the optimum derivation under the unnormalised distribution de-

fined by the model is only one of several possible decision rules. In this

thesis two classes of decision rules are addressed, the traditional decoding

rule, an optimisation problem, and decision rules based on sampling —

the problem of drawing samples from the normalised distribution p̄Λ(d). An

example of the latter is Minimum Bayes Risk (MBR) decoding, where rather

than selecting the translation that maximises the model, one selects, out of

a representative sample of the distribution, the translation that minimises a

loss function. Decision rules and loss functions will be discussed in Section

3.2. Moreover, in this thesis strong guarantees are sought, such as reaching

optimality, and drawing independent samples from the true distribution. In

order to achieve that we will investigate in detail what makes phrase-based

9This thesis only addresses models of translational equivalence that produce strings

of finite length, however, there are formulations which model word insertion producing

sentences of unbounded length (Brown et al., 1993).
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and hierarchical SMT hard problems — which is mostly related to charac-

teristics of the set D and the parameterisation pΛ(d) = exp{f(d,Λ)}.

2.4.1 Models of translational equivalence

In phrase-based SMT (Koehn et al., 2003), building blocks are aligned pairs

of phrases, or biphrases, where a phrase is simply a contiguous sequence of

words, rather than a linguistically motivated unit.10 These bilingual map-

pings can be represented using a cascade of wFSTs (Kumar et al., 2006),

a generalisation of wFSAs for multiple vocabularies (see Sections 2.2.1 and

2.2.2). Moreover wFSTs are closed under composition, which means that a

cascade of finite-state transducers is in fact equivalent to a wFST (Hopcroft

and Ullman, 1969).

A derivation in phrase-based models is therefore represented by a se-

quence of transitions in a wFST, these transitions cover the input text in

arbitrary order generating the output from left to right. An important con-

straint in phrase-based SMT is that each source word must be translated

exactly once. Using a wFST, encoding information about the subsets of the

input covered by each hypothesis (a partial derivation), therefore prevent-

ing overlaps, requires 2I states, where I is the length of the input. This

non-overlapping constraint is the source of NP-completeness of phrase-based

models (Zaslavskiy et al., 2009) — which is also the case in word-based mod-

els (Knight, 1999). To lower the space complexity of such models, reordering

may be restricted to happen within a limited window given by some notion

of distortion limit. In fact there are several strategies for limiting reordering

and they often result in non-equivalent spaces of solutions being represented.

Lopez (2009) formalises the most popular reordering strategies and discusses

their time and space complexities. Typically, complexity is lowered to a

10Simard et al. (2005) and Galley and Manning (2010) successfully model discontiguous,

non-hierarchical, phrases.
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polynomial function of I and an exponential function of the distortion limit

(which is set to a small constant, e.g. 4-6).

In hierarchical phrase-based, or simply, hierarchical SMT (Chiang,

2005), building blocks are synchronous context-free rewrite rules. That is,

rules of the kind α → 〈β, γ,∼〉, where α is a variable, β is a sequence of

variables and input words, β is a sequence of variables and output words,

and ∼ is an alignment function defining a one-to-one correspondence between

the variables in β and γ. We call α the rule’s left-hand side and 〈β, γ〉 the

rule’s right-hand side, being β the input and γ the output. These bilingual

mappings can be compactly represented using wSCFGs, a generalisation of

wCFGs for multiple vocabularies (see Sections 2.2.3 and 2.2.4).11 Moreover,

hierarchical models of the kind introduced by Chiang (2005) are typically

restricted to handling up to two nonterminals on the right-hand side of rules,

being weakly equivalent to ITGs (Wu, 1997).

A derivation in hierarchical models is therefore represented as a sequence

of rule applications in a wSCFG. These rules replace one variable at a time,

synchronously on the source (input) and on the target (output) side. A

derivation defines a parse tree over the input text which maps onto an iso-

morphic tree on the target side, which in turn projects onto a translation.

While phrase-based reordering is arbitrary — one allows any or at least a sub-

set of the possible permutations of the input — in the hierarchical case, the

synchronous grammar encodes a polynomial number of reordering operators

learnt from the parallel data.

11Other formalism include, but are not limited to: Tree-Adjoining Grammars (TAGs)

(Shieber and Schabes, 1990), Push-Down Automata (PDAs) (Iglesias et al., 2011) and

Tree-Substitution Grammars (TSGs) (Schabes, 1990).
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2.4.2 Parameterisation

A typical parameterisation of a phrase-based model includes features such

as (1) forward and backward phrase-translation probabilities, estimated as

the relative frequency that a certain source phrase is translated into a cer-

tain target phrase and vice-versa in a large bilingual corpus; (2) some sort of

lexical smoothing that estimates how well words align to each other within a

phrase pair; (3) a phrase- and a word-count, which together control whether

the model prefers fewer and longer phrases to several short phrases; (4) a dis-

tortion cost, which captures to which degree the input text is translated out

of order; and (5) an n-gram language model feature that binds sequence of

target words together rewarding/penalising for fluency. Observe that while

(1) to (3) are local and only depend on individual choices of biphrases, (4)

depends on pairs of biphrases adjacent in a derivation, and (5) depends on

a finite history of target words yielded. Equation 2.6 illustrates this param-

eterisation: ψ is the linear combination of features over sequences of target

words in the yield y = yield(d), φ is the linear combination of features that

decompose over phrase pairs directly, and δ is the linear combination of fea-

tures that require pairs of adjacent biphrases, such as the distortion cost.

Other features typically fall in one of these three categories.

f(d) = ψ(yield(d)) +
l∑

i=1

φ(ei) +
l−1∑
i=1

δ(ei, ei−1) (2.6)

A typical parameterisation of a hierarchical model includes features

such as (1) forward and backward rule-translation probabilities; (2) lexical

smoothing; (3) phrase and word counts, which together control whether the

model prefers longer or shorter derivations; (4) a “glue rule” count, which

controls the model’s preference for hierarchical over serial combination of

phrases; and (5) a language model feature over target n-grams. Again, most

features, (1) to (4), are local and only depend on individual choices of syn-
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chronous rules, while (5) depends on a history of target words yielded. Note

that in this formulation there are no mechanisms other than the grammar

itself to model reordering phenomena, however the formulation could be ex-

tended to include soft constraints on reordering (Chiang et al., 2008). In

Equation 2.7, ψ is the linear combination of the features over target n-grams

in y = yield(d), and φ is the linear combination of features that decompose

over rules directly.

f(d) = ψ(yield(d)) +
l∑

i=1

φ(ei) (2.7)

With both phrase-based and hierarchical SMT, a target LM is necessary

to rescore derivations. An n-gram language model defines a distribution

over strings of the target language under a nth order Markov independence

assumption. That is, the probability of a word given a context history is

approximated to that of the given word preceded by a shortened context

containing only n − 1 words. Due to this Markov assumption, an n-gram

LM can be represented by a wFSA where states represent context histories.

Equation 2.8 shows the form of the LM distribution, where y = 〈y1, . . . , yJ〉
represents an output string. This distribution is estimated from normally

large monolingual corpora.

plm(y) ≡
J∏
i

plm(yi|yi−n+1 . . . yi−1) (2.8)

Nonlocal parameterisation of the kind of the language model compo-

nent adds to the complexity of the space of weighted derivations. Recall that

the linear model discussed before requires features to decompose additively

over the steps in a derivation. Therefore to incorporate n-gram features,

each step e must incorporate sufficient information about nonlocal depen-

dencies.12 In a wFSA this means that each state must remember the n − 1

12In phrase-based SMT, a step is a transition in a wFST. Similarly, in hierarchical
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(c) 2-gram language model

Figure 2.2: Example of the space of solutions of a phrase-based model

words in the suffix of the subderivations it groups. In a wCFG this means

that nonterminals must encode information about (n−1) words in the prefix

and (n− 1) words in the suffix of the target strings they span.

Figures 2.2b and 2.2c illustrate the increase in the cost of representa-

tion from adding feature functions that depend on the interaction between

phrases. The former shows part of the search space in Figure 2.2a expanded

as to memorise at each state the last source position translated, which is

necessary to compute a distortion cost. The latter illustrates the additional

cost from adding a 2-gram language model component, which requires that

each state memorises the last target word emitted.

Figure 2.3a illustrates the space of solutions of a hierarchical model with-

out an LM component, the indices of the variables relate to positions between

words in the input sentence “o discurso do presidente” (the discourse

of the president), ranging in the interval [0, 4]. A variable on the input

SMT, a step is a rule in a wSCFG. Due to a connection to hyperedges in hypergraphs

(elaborated in Section 2.3), a step is also referred to as an edge.
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LHS RHSi RHSo

S0 4 → <s> X0 4 </s> 1

X0 4 → o X1 2 do X3 4 the 2 ’s 1

X0 4 → o X1 2 do X3 4 the 1 of the 2

X1 2 → discurso speech

X1 2 → discurso discourse

X3 4 → presidente president

(a) Bilingual forest (without LM)

LHS RHSo

S0 4 → <s> [X, t ? s]0 4 </s>

S0 4 → <s> [X, t ? d]0 4 </s>

S0 4 → <s> [X, t ? p]0 4 </s>

[X, t ? s]0 4 → the [X,p]3 4 ’s [X, s]1 2

[X, t ? d]0 4 → the [X,p]3 4 ’s [X,d]1 2

[X, t ? p]0 4 → the [X, s]1 2 of the [X,p]3 4

[X, t ? p]0 4 → the [X,d]1 2 of the [X,p]3 4

[X, s]1 2 → speech

[X,d]1 2 → discourse

[X,p]3 4 → president

(b) Target forest + 2-gram LM

Figure 2.3: Example of the space of solutions of a hierarchical model

right-hand side (RHSi) of the form Xi j represents a nonterminal category X

spanning from position i to position j in the source. A boxed index on the

output right-hand side (RHSo) of the form k is a slot associated with the

kth variable on the input right-hand side. That is, a rule application that

replaces the input variable jointly rewrites the boxed index as well. Figure

2.3b illustrates the increase in the cost of representation from adding a 2-

gram LM feature. Nonterminals on the target grammar are annotated with

target strings. They are represented as [X, y1 ? ym]i j, signifying that X cov-

ers i . . . j in the source, and it yields the target string y1 ? ym, where the infix

has been elided. The prefix and the suffix are made explicit, so that the LM

component can be computed for rules combining nonterminals.

The space of weighted derivations that represents the goal distribution

is equivalent to the intersection between the space of derivations weighted

only locally, that is a wFSA in phrase-based models or a wCFG in hierar-

chical models, and the automaton that represents the language model (Chi-

ang, 2005; Kumar et al., 2006; Dyer et al., 2008). Even when the space of
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derivations is polynomial before incorporating the LM component — which

in phrase-based models is only the case under the assumption of a distortion

limit — its intersection with a full LM is too slow to be practicable (see

Section 3.3). In practice rather than instantiating an n-gram LM as a wFSA

and performing the explicit intersection, one resorts to approximation tech-

niques such as beam-search (Koehn et al., 2003) and cube-pruning (Chiang,

2007). These techniques build explicitly only a portion of the full space of

derivations while searching for a high scoring derivation in an A∗ fashion

(Hart et al., 1968). However, they do not rely on admissible heuristics and

optimality is not guaranteed. Moreover, because they prune the distribution

in arbitrary ways, sampling cannot be done in an exact sense.

2.4.3 Decoding

In this section we revisit two algorithms for approximate decoding that are

particularly popular, namely, beam-search and cube-pruning. The former

concerns finite-state models of the kind introduced by Koehn et al. (2003).

The latter is used with context-free models of the kind introduced by Chiang

(2005). They trade time efficiency for search errors by relying on fast-to-

compute heuristics and pruning.

Beam-search (Koehn et al., 2003) is a search strategy that builds a

directed acyclic graph representing a subset of the complete space of deriva-

tions implicitly defined by the model. A path in this lattice represents a

derivation. A partial derivation is called a hypothesis. The algorithm pro-

ceeds by translating arbitrary segments of the input using the translation

options available in a collection of biphrases (the phrase table). Hypotheses

are expanded by addition of one such phrase pair at a time. The output

string is built from left to right, in the target language order, and the input

string is covered in arbitrary order. A single hypothesis can be expanded in

many different ways depending on the choice of input phrase to cover next
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and the translation it yields. A hypothesis that translates each and every

word of the input exactly once is a (complete) derivation.

A dynamic program that implements this strategy uses states to represent

hypotheses. Their signature contains: (1) a bit vector that stores coverage

information used to prevent biphrases from overlapping in the source, that is,

it prevents source words from being translated more than once; (2) the last

source word of the most recently chosen biphrase, necessary to compute a

distortion cost; and (3) the last n−1 target words in the hypothesis, necessary

to compute an n-gram LM feature. States are organised in stacks (priority

queues) according to how many source positions their underlying hypotheses

cover. A transition e represents the selection of a biphrase, it has a tail

t[e] (its origin state) and a head h[e] (its destination state), and it covers

a source span f [e] . . . l[e] producing target words o[e]. Consider suffix(·) a

function that takes a state and returns the last n − 1 target words yielded.

Similarly, let last(·) be a function that takes a state and returns the last

position covered in the source. A transition e is weighted by ψ(suffix(t[e]) +

o[e]) + φ(e) + δ(last(t[e]), f [e]), where suffix(t[e]) + o[e] is the string resulting

of the concatenation of the suffix stored in the origin t[e] and the output

phrase associated with e.

The algorithm starts with a null hypothesis and follows by exhaustive

expansion. However, stacks have a maximum size. If this limit is to be ex-

ceeded, the worst hypotheses are pruned. The maximum stack size realises a

form of pruning called histogram pruning. Besides, hypotheses that are too

far from the best hypothesis in the stack are discarded. How far a hypothesis

can be is controlled by a parameter called the beam width which realises a

form of pruning called threshold pruning. A heuristic “future cost” estimates

the cost of finishing the translation from any given state in the lattice. It

is cheaply computed by combining the best translation options scored dis-

regarding reordering and complex interactions between phrase segmentation
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and the language model. The future cost is not an admissible heuristic, there

is no guarantee that it represents the cheapest possible way of completing a

partial derivation. Therefore, beam-search gives no guarantee of optimality,

not even within its own pruned search space. Beam-search’s popularity is

due to its empirical efficacy and efficiency, and robust open-source imple-

mentations (Koehn et al., 2007; Dyer et al., 2010).13

Cube-pruning (Chiang, 2007; Huang and Chiang, 2007) uses a dynamic

program based on CKY parsing (Kasami, 1965; Younger, 1966; Cocke and

Schwartz, 1969) to parse the input sentence bottom-up while generating

translations. The algorithm builds an acyclic directed hypergraph repre-

senting a subset of the complete space of derivations implicitly defined by

the model. It proceeds covering contiguous spans in the source by matching

them against rewrite rules in a collection of synchronous context-free rules

(the rule table). These contiguous spans do not contain only words (termi-

nals, in grammar parlance), but also variables (nonterminals) that represent

source spans already covered. Unlike the phrase-based case, hypotheses are

not expanded by concatenation of biphrases left-to-right in target language

order. Instead, hypotheses are expanded by grouping adjacent spans under a

single nonterminal. This process goes on forming larger spans until a single

nonterminal covers the entire source sentence.

A dynamic program that implements this search procedure uses states

(items, in parsing parlance) to represent hypothesis. An item, denoted by

[X, i, j, γ1 ?γ2], contains: (1) a contiguous source span i . . . j ; (2) the nonter-

minal X covering that span; and (3) information used for computation of LM

13For a sentence of length I, the complete space of derivations would require O(2II2+n)

states: the bit vector contributes with 2I , the distortion feature contributes with I, the

segmentation of the source contributes with I2, and the n-gram LM feature contributes

with In−1. With pre-determined limits on distortion, phrase length, size of the vocabulary

of target phrases, stack size (histogram pruning) and beam width (threshold pruning),

decoding can be done in time linear with the input length I (Koehn et al., 2003).
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weights, namely, a target yield where all but n−1 words in the prefix (γ1) and

n−1 words in the suffix (γ2) are elided. In this program, an edge e connects a

sequence of states (the edge’s tail t[e]) to a single state (the edge’s head h[e])

and is associated with a synchronous context-free rule α → 〈β, γ,∼〉. The

edge’s weight is given by ψ(yield(h[e])) + φ(α → 〈β, γ,∼〉), where ψ scores

only the complete n-grams in yield(h[e]), and φ scores the synchronous rule

locally. The edge’s tail is directly associated with the input right-hand side

β. It combines items spanning adjacent sequences in the source from left to

right. The synchronous rule tells how these spans are reordered and trans-

lated yielding a target string.

The items are organised in a chart with cells (priority queues). A cell

[X, i, j] groups all items covering the input span i . . . j with X. Cells play a

similar role to that of stacks in beam-search. To limit parsing complexity,

rules are limited to having up to two nonterminals on their right-hand side.

Therefore, in the general case, a rule has the form

X → 〈xi−1
q Xxk−1

j+1Xx
r
l+1, γ1Xγ2Xγ3,∼〉

where xba is a sequence of input terminals, and γi is a (possibly empty) se-

quence of output terminals. Observe that this rule combines items from cells

[X, i, j] and [X, k, l] producing items in cell [X, q, r]. The number of items

generated by this rule is proportional to O(|∆|4(n−1)), where |∆| is the size

of the target vocabulary (typically a function of the input length I). The

exponent is due to the interactions between complete n-grams on the target

right-hand side (γ1X, Xγ2, γ2X and Xγ3).

The time complexity without any pruning is O(I3|∆|4(n−1)), where the

number of possible segmentations of the input is proportional to I3. This

algorithm is too slow to be practicable even for short sentences using a 2-

gram language model. To speed up the algorithm, the number of items in

a cell is limited by a predetermined constant, and hypotheses are discarded

if they score worse than the best item in the cell by a predetermined factor.
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These parameters are equivalent to the stack size and the beam width in

beam-search. For the purpose of pruning, an inadmissible heuristic accounts

for partial LM information attempting to establish more meaningful com-

parison of items within a cell. Finally, items are not exhaustively combined

by the application of a rule, instead they are combined until the cell is filled

up or an item violating the beam width is produced. This enumeration is

only approximately monotonic, thus items are not always generated best-first

(Huang and Chiang, 2007).

2.5 An abstract view of SMT

An abstract formulation of SMT built upon an algebra of weighted sets and

relations was introduced by Dyer (2010). In his view, translation is formally

described in terms of operations between weighted sets and weighted binary

relations.

Let X be the weighted set that represents the input text and X be its

identity-transducer.14 Let G be the weighted binary relation that compactly

represents the translational equivalences between the source and the target

languages.15 Finally, let A be the weighted set of strings of the target lan-

guage, also known as the LM, and A its identity-transducer. A formal model

of translation can be seen as the composition of these three objects. The

space of weighted translations is the output projection of the composition of

these three weighted binary relations, as shown in Equation 2.9.16

14Typically the input is a single sentence (which can be represented as an unweighted

singleton), however such generalisation makes it natural to move on to weighted word-

lattices and other compact representations of ambiguity (Dyer, 2010).
15This object represents the bilingual mappings (including reordering) of strings. In

different formalism it is represented by different computational tools, such as weighted

finite-state automata, weighted context-free grammars, weighted tree-substitution gram-

mars, etc (Lopez, 2008).
16Traditionally the letters f and e are used to denote source and target variables, re-

40



CHAPTER 2. BACKGROUND

(X ◦ G ◦ A) ↓ (2.9)

In phrase-based SMT, the translation model is equivalent to a wFST

(Kumar et al., 2006). In hierarchical phrase-based SMT, the translation

model is equivalent to a wSCFG (Chiang, 2005). These two objects can

be encoded as hypergraphs (Gallo et al., 1993), a generalisation of graphs

for edges with multiple origin nodes, such as it is the case with context-free

grammars.

In this work the input object will always be an unweighted singleton x.

Therefore, letG(x) ≡ (X◦G) ↓ represent the translation hypergraph obtained

by output-projection of the composition between the input and the model

of translational equivalences, that is, the weighted set of translations before

incorporating the language model. It is worth highlight that the methods

described here generalise straightforwardly to weighted sets of input strings.

Figure 2.4a illustrates x, an input sentence encoded as an FSA. Fig-

ure 2.4b illustrates G (weights are omitted in the illustration), a wSCFG

expressing the known translational equivalences. The composition X ◦ G
(Figure 2.4c) instantiates the grammar producing an acyclic hypergraph. Fi-

nally, the projection (Figure 2.4d) is the set of all possible tree-structured

translations of the input.

To complete the translation process one needs to re-weight the possible

strings by incorporating the language model, which is achieved with the

weighted intersection G(x)∩A. Finally, a decision rule (see Section 3.2) will

select a translation or a set of translations from the resulting object.

This abstract formulation helps understand the characteristics of the

space of weighted derivations defined by the model. However, due to the

magnitude of these objects one typically resorts to different pruning strate-

spectively. In this work we use x and y to avoid confusion, particularly with edges which

are denoted by e.
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presidenteo dodiscurso
10 32 4

(a) Input X

LHS RHSi RHSo

S → X 1

X → o X do X the 2 ’s 1

X → o X do X the 1 of the 2

X → discurso speech

X → presidente president

(b) Translation model G

LHS RHSi RHSo

S0 4 → X0 4 1

X0 4 → o X1 2 do X3 4 the 2 ’s 1

X0 4 → o X1 2 do X3 4 the 1 of the 2

X1 2 → discurso speech

X3 4 → presidente president

(c) Instantiated grammar X ◦ G

president

speech

the 1 of the 22

the 2 ’s 1

1

1

2

1

1

X0 4 S0 4

X3 4

X1 2

(d) Translation hypergraph G(x) = (X ◦ G) ↓

Figure 2.4: An example of a translation hypergraph

gies which can affect each object individually, or the composition as a whole.

Nevertheless, this abstract formulation gives us a view of the combinatorial

discrete space over which inference is to be done and allows to formalise it

with standard computational tools and algorithms.

2.5.1 Complexity

In SMT, the space of all possible mappings between bitexts is typically finite

and can be represented by finite-state or context-free transducers.

In the general case, in which words may be translated in arbitrary order

— any of its possible permutations — a finite-state model is NP-complete.

This can be proven by connection to the Travelling Salesman Problem (TSP)

42



CHAPTER 2. BACKGROUND

(Knight, 1999; Zaslavskiy et al., 2009). On the other hand, a context-free

model takes polynomial time and space. The grammar encodes a polynomial

number of reordering operators and the intersection with a finite-state lan-

guage model is also polynomial. Nevertheless, exact intersection algorithms

are too slow to be practical.

Another complication is that the bilingual alignment, that is, the way

translational equivalences decompose into finite-state or context-free build-

ing blocks, adds to the ambiguity of the model. In other words, these models

describe distributions over derivations (where the word derivation is used to

refer to a solution in either a finite-state or a context-free model), while, ul-

timately, one wishes to reason about target strings. Reasoning about strings

requires ⊕-summing away the ambiguous structures, that is, summing over

all of the structures that project onto the same output string. Sima’an (1996,

2002) shows that, in the general case, reasoning about strings under such am-

biguous representations is NP-complete for either types of models.

Therefore, it is typical in SMT, and other NLP applications, to reason

about derivations instead of string themselves. In probabilistic reasoning,

that relaxation implies further partitioning the probability mass, and there

will be no guarantees that the best derivation complies with the best string.

In this thesis we reason exactly over derivations both in optimisation and

in sampling. Moreover, an exact sampler over derivations is also an exact

sampler over strings, which in certain cases may lead to more theoretically

sound approximations to the problem of finding the best string.
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Chapter 3

Inference

This chapter is divided in three main parts. The first part (Section 3.1) is

a revision of Inside-Outside, an important inference algorithm generalised

to semirings (see Section 2.1). It also shows that for tractable hypergraphs,

sampling and optimisation can be done with a simple dynamic program that

relies on the computation of inside weights. Section 3.2 formalises decision

rules and surveys related work on their use in SMT. Finally, Section 3.3

surveys previous work on inference in SMT which is related to the work

presented in this thesis.

3.1 Dynamic programming algorithms

This section revisits the Inside-Outside algorithm and its application, par-

ticularly of the Inside part, to sampling and optimisation from hypergraphs.

3.1.1 Inside-Outside

In probabilistic parsing, the inside probability is the probability that a certain

sequence of terminal symbols (a phrase) is spanned by a certain nonterminal

(a phrase category) in no specific context. For an intuitive illustration, con-

sider the parse tree shown in Figure 3.1a adapted from (Goodman, 1998).

The probability that the category NP spans the phrase “his thesis” is the

quantity inside(“his thesis”, NP). It abstracts away the internal structure of

the phrase, as shown in Figure 3.1b. The outside probability can be thought

of as the probability of everything surrounding a certain phrase given an
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Figure 3.1: Illustration of inside and outside probabilities

input sentence. In the example, the probability that “loves” is tagged as a

verb in the sentence “Stuart loves his thesis” is the quantity outside(“Stuart

verb his thesis”).

Baker (1979) introduced the Inside-Outside algorithm, a generalisation of

Forward-Backward (Chang and Hancock, 1966; Baum et al., 1970) that op-

erates with wCFGs, rather than wFSAs. Goodman (1998, 1999) generalised

Inside-Outside to semirings. We revisit this algorithm here for an acyclic

hypergraph G = 〈V, 〈E,w〉〉 and a commutative semiring K.1 Moreover G

represents a finite-state automaton or a context-free grammar, and it has a

single goal node vg, also denoted by root, whose weight is 1̄ ∈ K. The ab-

sence of cycles in G means that its nodes can be topologically sorted, that is,

there is a partial ordering between nodes in V , such that if a node v depends

on a node u, u is processed before v.

Algorithm 1 illustrates topological sorting and runs in linear time with

the size |G| = |V | + |E| of the hypergraph. One starts with a set S of

nodes with no incoming edges (line 2), that is, nodes that do not depend on

any other node, and a mapping between nodes and their direct dependencies

(line 3), where a node depends (directly) on the tail nodes of its incoming

1Goodman (1998) discusses the computation of inside and outside weights from cyclic
hypergraphs as well as using non-commutative semirings.
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Algorithm 1 Topological sort
1: function TopSort(G = 〈V, 〈E,w〉〉)
2: S = {q ∈ V : BS(q) = ∅} . states with no dependencies
3: D = {v 7→ {u : ∃e ∈ BS(v) ∧ u ∈ t[e]} : v ∈ V } . dependencies
4: L = 〈〉 . top-sorted nodes
5: while S 6= ∅ do
6: q ← pop(S) . remove and return a node from S
7: L← L+ 〈q〉 . append q to L
8: for e in FS(q) do . outgoing edges from q
9: p← h[e] . parent of q in e

10: D(p)← D(p) \ {q} . remove q from D(p)
11: if D(p) == ∅ then . p’s dependencies have been sorted
12: S ← S ∪ {p}
13: end if
14: end for
15: end while
16: return L
17: end function

edges. A node in S is such that its dependencies have already been processed.

Therefore, nodes in S are popped one at a time, added to the top-sorted

list and removed from the dependencies of their parents (head nodes of the

outgoing edges). When all of a node’s dependencies have been sorted, this

node can be added to S (line 12). The algorithm terminates when S is empty.

The inside weight of a node q is the total weight under that node in G.2

It is given by Equation 3.1, where d is a derivation and e is an edge in d.

Algorithm 2 illustrates a dynamic program to compute inside weights which

runs in time O(|G|).
I[q] =

⊕
d∈G

⊗
e∈d

w(e) (3.1)

In the sum-times semiring, I[q] can be seen as the total probability mass

under q. The quantity I[vg] is the sum of weights of all derivations in the

hypergraph. That is, the Inside algorithm provides an efficient way of com-

2Because G’s nodes have a partial ordering, it is possible to imagine G as a tree struc-
ture, in which nodes with no dependencies are at the bottom (leaves) and the goal node is
at the top (root). The total weight under q refers to the sum of weights of all subderivations
(top-down) starting from q.
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Algorithm 2 Inside weights
1: function Inside(G = 〈V, 〈E,w〉〉)
2: for q in TopSort(G) do . visit nodes bottom-up
3: incoming ← B(q)
4: if incoming == ∅ then
5: I[q]← 1̄ . leaves
6: else
7: I[q]← 0̄
8: for e in incoming do . total inside weight of an incoming edge
9: k ← w(e) . including the edge’s own weight

10: for r in t[e] do
11: k ← k ⊗ I[r]
12: end for
13: I[q]← I[q]⊕ k . accumulate for each edge
14: end for
15: end if
16: end for
17: return I
18: end function

puting the partition function used to normalise the distribution defined by

the hypergraph, which enables, for instance, probabilistic sampling. In the

max-times semiring, I[q] represents the maximum weight under q. There-

fore, the quantity I[vg] is the weight of the best derivation in the hypergraph,

which can be used to perform maximisation.

The outside weight of a node q is the total weight surrounding q, but

excluding that node. In probabilistic parsing it is associated with the total

probability around a phrase. Algorithm 3 illustrates a dynamic program to

compute outside weights which runs in time O(|G|2). The outside weight

is such that I[q] × O[q] is the marginal weight of q in G. In a probability

semiring, the marginal is the expectation under the model of sampling q from

G. Algorithm 4 shows how the marginal weights of nodes and edges can be

computed in linear time O(|G|) using pre-computed Inside-Outside weights.

Edge and node marginals can be used to identify parts of the hypergraph that

are more likely than others. Sixtus and Ortmanns (1999) propose a pruning
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Algorithm 3 Outside weights
1: function Outside(G = 〈V, 〈E,w〉〉, I)
2: for q ∈ V do . these are all nodes
3: O[q]← 0̄
4: end for
5: O[root]← 1̄ . this is the goal node — root symbol
6: for q in reverse(TopSort(G)) do . visit nodes top-down
7: for e ∈ BS(q) do . q’s incoming edges
8: for r in t[e] do . children of q in e
9: k ← w(e)⊗ O[q]

10: for s in t[e] do . siblings of r in e
11: if r 6= s then . thus r itself must be excluded
12: k ← k ⊗ I[s] . incorporate inside weights surrounding r
13: end if
14: end for
15: O[r]← O[r]⊕ k . accumulate it for r
16: end for
17: end for
18: end for
19: return O
20: end function

strategy for word graphs based on marginal probabilities and call it forward-

backward pruning. Caraballo and Charniak (1998) extend the strategy to

probabilistic context-free grammars. In SMT, Graehl (2005) and Huang

(2008) use edge marginals to prune translation forests. In this thesis, edge

marginals are used to selectively intersect a hypergraph with an automaton

expanding the hypergraph only in regions that are likely to participate in

high-scoring derivations.

3.1.2 Sampling and optimisation

Sampling and optimisation can be seen as two extremes in a continuum of

inference tasks in Lp spaces (Dymetman et al., 2012b), an argument that will

be better established in Section 4.1. One of the main challenges of sampling

from a multi-dimensional distribution is computing this distribution’s parti-

tion function, that is, ⊕-summing over all the exponentially many derivations
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Algorithm 4 Marginal weights
1: function NodeMarginals(G = 〈V, 〈E,w〉〉, I, O)
2: for q ∈ V do . these are nodes
3: M[q]← I[q]⊗ O[q]
4: end for
5: return M . marginal weight of symbols
6: end function

1: function EdgeMarginals(G = 〈V, 〈E,w〉〉, I, O)
2: for e ∈ E do . these are edges
3: M[e]← w(e)⊗ O[h[e]]
4: for q in t[e] do
5: M[e]← M[e]⊗ I[q]
6: end for
7: end for
8: return M . marginal weight of rules
9: end function

it represents. The inside algorithm provides an efficient way of obtaining that

quantity exactly, as long as the distribution can be represented by a tractable

hypergraph.

Algorithm 5 illustrates the process of sampling from the distribution as-

sociated with a hypergraph G = 〈V, 〈E,w〉〉, given inside weights computed

from G with an appropriate semiring. As it will soon become obvious, this

algorithm performs sampling in a generalised sense that also accounts for

optimisation. One starts from the root of G and proceeds by iteratively

selecting an edge that satisfies the criterion established by the procedure se-

lect (line 6). This procedure selects an edge whose head is q out of the set

of incoming edges to q, i.e. e ∈ BS(q). The selected edge is added to the

partial derivation and its tails are added to the queue of nodes to be visited.

Since G is acyclic, this algorithm terminates in at most |V | steps. In the end

a complete derivation is produced and returned.

Iq(e) = w(e)⊗

⊗
r∈t[e]

I[r]

 (3.2)
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Algorithm 5 Generalised sampling
1: function Sample(G = 〈V, 〈E,w〉〉, I)
2: d← 〈〉 . an empty partial derivation
3: Q← 〈vg〉 . a queue of nodes to be visited, starting from vg
4: while Q do
5: q ← pop(Q)
6: e = select(BS(q), I)) . select an edge
7: d = d + 〈e〉 . add the edge to the partial derivation
8: Q← Q+ t[e] . queue the nodes in the tail of the selected edge
9: end while

10: return d
11: end function

To characterise the derivations sampled, consider the function Iq : BS(q) ⊆
E → K defined in Equation 3.2. This is the unnormalised distribution over

incoming edges to a node q, such that, for each edge, it returns the inside

weight associated to that edge, with all of its tail nodes considered, ⊗-times

the edge’s own weight. If inside weights are computed in the sum-times

semiring, the quantity Iq(e) for a given edge e ∈ BS(q) represents the total

weight associated with derivations that continue top-down from q via e. If

the max-times semiring is used instead, the quantity Iq(e) represents the

maximum weight associated with continuing a derivation top-down from q

via e.

Sampling is an instance of Algorithm 5, where we operate in the sum-

times semiring and the procedure select draws a random edge with respect

to the distribution Īq(e), as shown in Equation 3.3. Note that for each node q

there is a finite number of edges in BS(q), bounded by |E| and typically much

smaller than that, thus summing over BS(q) to compute the normalisation

term is straightforward.

ê ∼ Īq(e) =
Iq(e)∑

e′∈BS(q) Iq(e′)
(3.3)

Optimisation is also an instance of Algorithm 5, where we operate in the

max-times semiring and the procedure select performs the maximisation
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in Equation 3.4. Finding the argmax is straightforward because BS(q) is

bounded and typically small.

e∗ = argmax
e∈BS(q)

Iq(e) (3.4)

3.2 Decision rules

In Section 2.4.3, we discussed the decoding process as a maximisation prob-

lem, that is, decoding required finding the derivation which maximises the

objective function. This decision rule is not the only possible way to de-

cide on one of the exponentially many solutions encoded in a hypergraph.

In SMT, one is really interested in finding the best translation string for

a given input. Selecting the best derivation is a decision motivated almost

exclusively by computational complexity. Recall that the total weight of a

string requires summation over all derivations that yield it. Therefore, there

is no guarantee that the string yielded by the best derivation will be the

best possible translation defined by the model. Other decision rules take

more global information into account before committing to a solution. For

instance, some decision rules rely on a summary of the distribution given

by sampling. Others are based on the notion of expectation and capitalise

on the entire distribution. They can also bias the selection towards some

external notion of loss or quality.

If 〈X,w〉 is a weighted set, Equation 3.5 represents the max-weight deci-

sion rule.

x∗ = argmax
x∈X

w(x) (3.5)

This decision rule has at least two specialisations, namely, max-derivation

and max-translation. The former is the most popular of the decision rules

(Lopez, 2008), where 〈X,w〉 is a weighted set of derivations, typically rep-

resented by a hypergraph, x is a derivation, and w(x) its weight. The latter
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addresses the fact that parameterisation often splits the probability mass be-

tween the typically many structures on top of each string, that is, the fact

that multiple derivations actually project onto the same translation string.

A more principled decision rule would pick the one translation (string)

that has the maximum weight with all derivations considered. Let 〈D, u〉
be a weighted set of derivations and 〈X,w〉 be the weighted set of strings

yielded by derivations in D. The weight of a string x ∈ X is such that

w(x) =
⊕

d∈D(vg ,x) u(d), where D(vg, x) is the set of all derivations rooted at

the goal vg whose target projection is x. The max-translation rule picks from

all target strings in X ⊆ ∆∗ the one whose total weight
⊕

d∈D(vg ,x) u(d) is

maximum.3

Note that max-translation requires summation over all possible structures

on top of strings, an NP-complete problem (Sima’an, 1996, 2002). Note that

partitioning the probability mass assigned to a string x by introduction of a

latent variable, such as the structure on top of the string, does not change the

total mass assigned to x. Therefore, if the sampler is exact, in that samples

are independently drawn without biased correlations, this exact sampler of

derivations is also an exact sampler of strings. However, the max-translation

problem remains intractable in the general case. That is so because observing

the most probable string can still require an intractable number of samples.4

An approximation to the max-translation rule is the technique of crunch-

ing in which one sums over derivations in an n-best list (May and Knight,

3In the context of a string-to-tree model, May and Knight (2006) discuss a third instance
of the max-weight rule, which we could call max-output-tree. They introduce a technique
to determinise a hypergaph with respect to the target trees it produces. The total weight
of a target tree requires summing over all derivations that produce it (the input may be
segmented and consumed in different ways yet producing the same target tree). They
show that the ranking within an n-best list changes considerably by collapsing multiple
derivations that project on the same target tree.

4We do not attempt to formally address this observation, however we remark that the
intuition behind it is that the sampler error with respect to the max-translation criterion
(i.e. sampling a solution other than the best string) remains non-polynomial with the
input length. For a formal discussion with proofs refer to (Sima’an, 1996, 2002).
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2006). Blunsom et al. (2008) modify cube-pruning to keep the full target

string in the states of the dynamic program. As this is very expensive, they

resort to aggressive pruning and can only decode short sentences (up to 10

words). Li et al. (2009) use a variational technique which considers all deriva-

tions in a hypergraph (typically obtained with beam-search or cube-pruning).

Arun et al. (2009, 2010) design a Gibbs sampler, an MCMC method, for

phrase-based models and find an approximation to the best translation string

by marginalising over a sample of derivations obtained with that technique.

Deciding on a derivation that has maximum weight can be too harsh and

might overlook important aspects of the distribution, such as multi-modality

for instance. A more principled solution would take into account some notion

of risk associated to choosing a particular solution as opposed to any other,

and base the decision on minimising that risk.

A loss function defines an overall measure of loss incurred in choosing any

of the available solutions in the weighted set 〈X,w〉. It is such that it takes

a pair of translations, where one is assumed a hypothesis and the other is as-

sumed to be a reference (or gold-standard) translation, and returns how poor

an approximation the former is to the latter. If one has access to reference

translations, a principled decision rule is one that minimises the loss with

respect to those references. However, access to gold-standard translations is

restricted to training, when parallel data is available. In the absence of par-

allel data, one can minimise the expected loss with respect to the normalised

distribution w̄(x). Equation 3.6 shows this Minimum Bayes Risk (MBR)

rule (Bickel and Doksum, 1977), where 〈l(x′, x)〉w̄(x) =
∑

x∈X w(x)l(x′, x) is

the expectation of the loss function l : X × X → R under the normalised

distribution w̄(x). Observe that for a binary loss function, which is zero if

and only if x′ = x, minimising the expected loss is equivalent to maximising

the weight w(x) directly.
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x̂ = argmin
x′∈X

〈l(x′, x)〉w̄(x) (3.6)

This form of minimum risk rule requires normalisation of w(x). More-

over, a näıve implementation would require O(|X|2) evaluations of the loss

function, which is beyond consideration given the magnitude of X. Li and

Eisner (2009) introduce semirings for the computation of expectations and

variances from hypergraphs and describe a generalised Inside-Outside algo-

rithm for efficient computation of those quantities. However, to compute

expectations exactly 〈X,w〉 needs to be represented by a tractable hyper-

graph, which is typically not the case. Moreover, the choice of loss function

adds to the complexity of the representation, since sufficient statistics must

be incorporated to the steps in a derivation. A lower-complexity alterna-

tive is to compute the the minimum risk rule on the basis of an unbiased

sample from w̄. However, it is often hard to obtain unbiased samples from

multi-dimensional discrete distributions.

Kumar and Byrne (2004) introduces MBR decoding to SMT in the con-

text of approximate decoding algorithms. They rely on n-best lists to apply

the rule to a tractable subset of the space of possible derivations.5 Because

n-best lists are typically small (a few hundreds to a few thousands of deriva-

tions) they can work with a variety of loss functions including those based

on the traditional BLEU metric.6

Tromble et al. (2008) extend MBR decoding to complete translation lat-

tices (which might have been generated with some approximate method, such

as beam-search) using a loss function based on a sentence-level approxima-

5These n-best lists are arguably poor approximations of probabilistic samples. They
typically contain derivations clustered around what is heuristically believed to be the mode
of the distribution (Blunsom and Osborne, 2008).

6Bilingual Evaluation Understudy (BLEU) is a metric for automatic evaluation of ma-
chine translation quality. It compares a translation hypothesis to one or more references
based on a notion of precision of (exact) n-gram matching and a brevity penalty that
prevents very short translations to score higher (Papineni et al., 2002).
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tion to BLEU. Note that, while pruning the search space introduces arbitrary

biases, using the whole lattice gives access to much more diverse settings of

features than the n-best lists do, which results in less biased expectations.

Accurate expectations enable better parameter estimation. Similarly, Kumar

et al. (2009) generalise MBR decoding to complete translation hypergraphs.

DeNero et al. (2009) introduce consensus decoding, a decision rule related to

MBR that can be efficiently computed from sufficient statistics (e.g. n-gram

counts) in an n-best list or in an translation hypergraph.

Arun et al. (2010) use a Gibbs sampler to obtain samples indirectly from

w(x) and perform minimum risk decoding. However, their sampler produces

samples in a Markov chain, and it is hard to assess when, if ever, the chain

has converged to a sample from the goal distribution.

3.3 Inference in SMT

This section surveys related work on approximate and exact inference (sam-

pling and optimisation) for phrase-based and hierarchical SMT. In Section

3.3.1, we start with approximate methods to optimisation, followed by re-

lated work on approximate sampling. Section 3.3.2 surveys approaches to

exact optimisation. To the best of our knowledge, this thesis presents the

first approach to exact sampling in SMT (see Section 4.2).

3.3.1 Approximate inference

Dynamic Programming (DP) has always been at the core of SMT de-

coding, since the original IBM patents (Brown et al., 1995; Berger et al.,

1996a). The first decoders were inspired by A∗ optimisation (Hart et al.,

1968). In the dynamic program a hypothesis represents a partial derivation

(the prefix of a translation). If a hypothesis covers all the words of the in-

put, it represents a complete derivation. Hypotheses are organised in stacks

(priority queues), which are limited in size and serve the purpose of grouping
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hypotheses according to a common trait (e.g. the number of source words

covered). Organising hypotheses like that helps establish fair comparisons for

the purpose of pruning: if hypotheses of different length were to compete,

those covering fewer words would almost always get prioritised. In addition

to that, a heuristic estimates the cost of finishing a hypothesis by translating

the remaining uncovered words (rest cost, or future cost estimation). At each

iteration the program decides on which hypotheses to expand (e.g. the best

from each stack). The selected hypotheses are expanded by all applicable

actions (e.g. covering a word/phrase with a translation option) resulting in

new hypotheses that are inserted in the appropriate stacks. At this point

stacks might get pruned if too large.

An admissible heuristic is such that it never underestimates the cost of

finishing a translation from any given state of the search (Hart et al., 1968).

That way, the dynamic program can guarantee optimality (except for even-

tual pruning strategies) by always expanding the cheapest amongst all (over-

estimated) hypotheses (a form of best-first agenda). Designing admissible

heuristics is a difficult task. If the heuristic overestimates too much, a large

space of solutions is explored in order to ensure optimality. If the heuris-

tic is such that it might underestimate the rest costs (thus inadmissible),

the search algorithm might finish prematurely with a sub-optimal solution.

Admissible heuristics can be thought of as proxies to outside weights. Note

that while the computation of outside weights requires the instantiation of the

complete search space, admissible heuristics are designed to cheaply estimate

those weights in a best-first strategy. Stack decoding has been extensively

used in SMT decoding (Wang and Waibel, 1997; Germann et al., 2001; Och

et al., 2001; Tillmann and Ney, 2003; Koehn et al., 2003).

Beam-search (Koehn et al., 2003) and cube-pruning (Chiang, 2007) are

modern instances of DP-based decoding algorithms. They rely on pruning to

lower complexity to a manageable polynomial function of the input length.
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They employ fast-to-compute inadmissible heuristics. Hypotheses from all

stacks are exhaustively expanded up to the limits established by histogram

and/or threshold pruning. They also shrink the space of solutions by hypoth-

esis recombination (Och et al., 2001), an error-safe technique which merges

hypotheses that cannot be distinguished in terms of their signatures.

Watanabe et al. (2006) restrict the hierarchical phrase-based model of

Chiang (2005) to target grammars in Greibach Normal Form (GNF) (Greibach,

1965). That is, synchronous rules have the form X → 〈α, b̄β,∼〉, where b̄ is

a sequence of terminals and β is a sequence of nonterminals (they may be

empty sequences, but not both empty). Observe that only to the target side

of the grammar must be in GNF. The GNF facilitates incorporation of lan-

guage model scores. The framework is similar to a phrase-based model with

reordering hard-constrained by the grammar. Like in the phrase-based case,

the decoder proceeds generating the translation from left to right in target

language order. With respect to the language model, the states in the dy-

namic program need to memorise only the last n− 1 target words generated

(as opposed to the two boundaries of a span as it happens in cube-pruning).

Decoding algorithms based on finite-state operations implemented

by general purpose finite-state toolkits are also popular in phrase-based

SMT. However, they typically require strong limits in reordering (Kumar

and Byrne, 2003; Kumar et al., 2006). In the context of hierarchical models,

Gispert et al. (2010) replace cube-pruning by standard wFST operations.

First the input is parsed using CKY with hypothesis recombination, but

without pruning. Then a target language word lattice is generated from each

cell in the chart. Recall that a cell groups hypothesis that cover a span

i . . . j under nonterminal X, denoted [X, i, j]. Thus, each lattice represents

all the translations generated by subderivations in the cell. Constructing

such lattices requires processing nested items. A recursive procedure con-

trols for efficient construction of the final lattice using union, concatenation
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and replacement operations with OpenFST (Allauzen et al., 2007). Prun-

ing happens in a controlled way depending on the level of the item. They

work on both alignment and translation modes. In translation, they control

the degree of rule nesting in derivations by modification of the nontermi-

nal vocabulary, a technique they call shallow-n grammars. They rewrite the

ruleset of the grammar such that the maximum degree of rule nesting is n.

This technique helps alleviate overgeneration, a phenomenon by which the

same set of rules allows different translations, particularly due to different

nested configurations leading to further reordering.

An alternative to dynamic programming is greedy search. In greedy

search, one starts from a draft derivation, such as a word-to-word gloss trans-

lation, and proceeds by the iterative application of operators designed to

transform the solution. At each step, the algorithm selects the best deriva-

tion one operation away from the current one. The success of this strategy

depends on how much of the search space the operators can actually cover,

however, there are no guarantees of optimality. The operators should be

designed in such a way that they are not trapped in local maxima, they

modify hypotheses in a non-trivial manner, and they are inexpensive. Ger-

mann et al. (2001) first introduced greedy search to decode with word-based

models (Brown et al., 1990). Greedy strategies have also been proposed to

phrase-based and hierarchical models (Marcu and Wong, 2002; Eisner and

Tromble, 2006; Langlais et al., 2007). They typically start from a draft trans-

lation and hillclimb towards better hypotheses.

Sampling from intractable discrete distributions is a difficult task. A

simple and not necessarily effective strategy is to sample heuristically

from a truncated hypergraph produced by a DP-based decoder. This pruned

hypergraph contains only a subset of all possible derivations that are com-

patible with the input. Moreover, pruning adds arbitrary bias, therefore,

there is little hope that this procedure will produce samples according to the
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underlying model. Nevertheless, this technique might be sufficient to improve

the diversity of n-best lists (with respect to the derivations they contain) in

parameter estimation, a common scenario to which this technique has been

applied (see below).

Blunsom and Osborne (2008) address probabilistic inference in the con-

text of hierarchical translation, where sampling is used both for the purposes

of decoding and parameter estimation. They employ cube-pruning to con-

struct a pruned wCFG which generates a subset of all the possible derivations

that would correspond to a full intersection with the target language model.

Then, they sample heuristically from this wCFG through the same proce-

dure described in Section 3.1.2. By contrast to our approach, they do not

attempt to perform exact inference. However they do not only address the

question of decoding, but also that of training the model, which requires, in

addition to sampling, an estimate of the model’s partition function. Chatter-

jee and Cancedda (2010) use sampling to improve parameter estimation for

phrase-based models. They use beam-search to produce a truncated transla-

tion lattice from which they sample heuristically. Samples are used instead

of n-best lists to perform MERT directly.

MCMC algorithms have been designed for phrase-based and hierarchical

SMT. In Gibbs sampling (Geman and Geman, 1984), samples are obtained

by iteratively re-sampling groups of well-designed variables such that (i) the

sampler does not tend to be trapped locally by high correlations between

conditioning and conditioned variables, and (ii) the combinatorial space of

possibilities for the next step is small enough so that conditional probabilities

can be computed explicitly. By contrast to our exact approach, the samples

obtained by Gibbs sampling are not independent, but form a Markov chain

that only converges to the target distribution in the limit, with convergence

properties that are difficult to assess.

Arun et al. (2009, 2010) address sampling in phrase-based models. They
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use samples to decode with different decision rules, namely, max-derivation,

max-translation and MBR decoding. By contrast to this thesis, they do not

address the question of finding the maximum derivation directly, but do so

only through finding a maximum amongst the derivations sampled so far,

which in principle can be quite different. Roth et al. (2010) design a similar

Gibbs sampler for phrase-based models, however, they frame translation as

a conditional random field which allows overlapping biphrases. Sampling is

used for decoding and for training. Parameter estimation is performed with

SampleRank (Wick et al., 2009), a technique which encourages agreement

between the model and the objective function with respect to the ranking of

the solutions. Blunsom et al. (2009) design a Gibbs sampler for hierarchical

models, however, in the context of inducing synchronous grammars from

bilingual corpora. They work with grammars having up to three nonterminals

on the right-hand side. They argue that while a ternary grammar would

considerably complicate dynamic programming, it helps their sampler by

giving it access to operations that can more easily reach varied permutations

of a derivation’s internal structures.

The operators in (Arun et al., 2009; Blunsom et al., 2009; Roth et al.,

2010) are very similar to those in (Germann et al., 2001). In both greedy

search and Gibbs sampling, at each step the space of derivations reachable

from the current one is limited by the transformation operators, making the

space of reachable solutions tractable. In greedy search, one optimises this

one-step transformation. In Gibbs sampling, one samples from the distribu-

tion associated with each operation.

3.3.2 Exact inference

Under certain conditions A∗ style exact optimisation is possible for word-

and phrase-based models. Tillmann et al. (1997) work with word-based mod-

els and operate under the assumption that the alignment is monotone with
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respect to word order. Och et al. (2001) do not limit reordering, but decode

exactly only short sentences using A∗ and admissible heuristics. They also

discuss faster-to-compute almost-admissible heuristics. Kumar et al. (2006)

show that phrase-based decoding can be done exactly with strong limits in

reordering using standard wFST operations.

In the context of hierarchical models, the formal connections between

cube-pruning and A∗ can be insightful. Recall that cube-pruning works

by controlling item generation in synchronous parsing with an n-gram lan-

guage model component. Item generation refers to the process of creating

larger items by combination of previously proven items that interact in a

synchronous rule. In this process, cube-pruning attempts to create items in

best-first order. However, this enumeration is approximate (done with an

inadmissible heuristic), thus the algorithm might prematurely stop item gen-

eration, missing out good items. Hopkins and Langmead (2009) frame item

generation as a heuristic search for the top scoring combinations in a tree

structure that represents the possible ways of combining items in a rule. They

derive a tunable heuristic that ranges from strong (effective) inadmissible to

weak (not so effective) admissible and experiment with an exact version of

cube pruning which is feasible under some assumptions regarding the gram-

mars used. The authors show an important connection between cube-pruning

and A∗ which helps understand the idiosyncrasies of the former.

Zaslavskiy et al. (2009) formulate phrase-based decoding as an instance

of the Asymmetric Generalised TSP (AGTSP) and rely on robust exact and

approximate TSP solvers to perform fast decoding. In the AGTSP, the

salesman graph is a weighted directed graph G and a partition of the nodes

in G defining m disjoint subsets called clusters. The problem consists in

finding a tour with minimal cost such that each cluster is visited exactly

once. The nodes of the graph have the form (w, b) in which w represents

a source word (position) in the input and b is a biphrase whose source in-
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cludes w. The clusters are the subsets of nodes that share a common w. A

special cluster with a single node representing the sentence boundary is also

added. Nodes in different clusters are connected to be consistent with the

biphrases they represent and the source words they consume. Consider two

nodes (w, b) and (w′, b) sharing the same biphrase b, where w and w′ are

consecutive in the input, the cost between these two nodes is zero, because

the cost of the biphrase is taken into account once one commits to using it

for the first time. If two nodes (w, b) and (w′, b′) are such that w 6= w′, b 6= b′

and w′ is the leftmost source word in b′, the cost to move from the first to

the second represents the cost of committing to the biphrase b′. Features

local to the biphrases, the distortion cost, and the language model compo-

nent (if a 2-gram LM) can be computed directly. Whatever other pair of

nodes is not connected (or connected with an infinite cost). A tour from the

sentence boundary that visits each cluster exactly once and returns to the

sentence boundary represents a valid derivation. To account for higher-order

LMs, one strategy is to effectively multiply the number of nodes encoding

an n − 1 context history in each node (similar to what is done in dynamic

programming). However, this strategy increases considerably the salesman

graph compromising efficiency beyond a 2-gram LM.

To some extent, word-based decoding had been previously formulated as

an instance of the TSP by Germann et al. (2001), however, relying strictly on

Integer Linear Program (ILP). In the ILP formulation, an exponential

number of constraints is necessary to ensure that the source words are con-

sumed exactly once. As a consequence they work with short sentences (up to

8 words) and a 2-gram language model. Riedel and Clarke (2009) revisit that

formulation and apply a cutting-plane algorithm (Dantzig et al., 1954) (again

a solution inspired by TSP solvers) decoding sentences up to 30 words. In a

cutting-plane algorithm, the problem is solved without (or with a tractable

subset of) the exponentially many constraints that prevent input words from
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being translated more than once. If the solution defines a derivation in which

each source word is translated exactly once, the solution is guaranteed to be

optimal. Otherwise, some constraints are added and the problem is solved

again. This process is repeated until the optimal solution, the one that does

not violate the non-overlapping constraint, is found. This idea is also implic-

itly shared with methods based on Lagrangian relaxation (see below) and

our own formulation based on rejection sampling (see Chapter 6).

Rush et al. (2010) introduce dual decomposition (a special case of

Lagrangian relaxation) as a framework for deriving exact optimisation

algorithms for NLP problems. Within this framework, Rush and Collins

(2011) and Chang and Collins (2011) address exact decoding for hierarchical

and phrase-based translation, respectively. Rush and Collins (2011) use a

dual decomposition approach where the target wCFG component and the

target language model component trade their weights so as to ensure agree-

ment on what each component believes to be the maximum. In many cases,

this technique is able to detect the actual true maximum derivation. When

this is not the case, they use a finite-state-based intersection mechanism to

“tighten” the first component so that some constraints not satisfied by the

current solution are enforced, and iterate until the true maximum is found or

a time-out is met, which results in a high proportion of true maxima being

found.

Chang and Collins (2011) relax the space of solutions of a phrase-based

model by allowing violations of the non-overlapping constraint. They work

with a maximum distortion strategy avoiding the NP-completeness of phrase-

based models. In the unconstrained lattice, dynamic programming is feasible.

Soft constraints are added in the form of Lagrangian multipliers that are it-

eratively adjusted to penalise/reward derivations each time a source position

is covered. The multipliers are easily incorporated as weights in the objec-

tive function, thus the complexity of the search space, and the search itself,
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remains unchanged. If a solution that complies with the non-overlapping

constraint is found, it is guaranteed to be optimal. Otherwise, hard con-

straints are added to the lattice in the form of a coverage bit vector. That

is, they explicitly add partial coverage information to each and every state

of the lattice. Unlike the work presented in this thesis, they do not try to

alleviate the cost of incorporating the language model, and only experiment

with 3-gram LMs.7

7The use of Lagrangian multipliers, particularly in dealing with overlapping phrases, is
not incompatible with our approach based on rejection sampling. However, that possibility
is left for future work.
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Chapter 4

Exact inference in SMT with OS∗

In SMT, optimisation — the task of searching for an optimum translation

— is performed over a high-complexity discrete distribution defined by the

intersection between a translation hypergraph and a target language model.

As discussed in Chapter 3, this distribution is too complex to be represented

exactly and one typically resorts to approximation techniques such as beam-

search (Koehn et al., 2003) and cube-pruning (Chiang, 2007), where max-

imisation is performed over a pruned representation of the full distribution.

Often, rather than finding a single optimum, one is really interested in

obtaining a set of probabilistic samples from the distribution. This is the case

in MBR decoding where one chooses from a sample of likely translations the

one that minimises a loss function. Samples are also necessary in training

where one needs to obtain unbiased estimates of expectations in order to fit

the parameters of the model. Due to the additional computational challenges

posed by sampling, n-best lists, a by-product of optimisation, are typically

used as a biased approximation to true probabilistic samples. A known issue

with n-best lists is that they tend to be clustered around the mode of the

distribution (Blunsom and Osborne, 2008). A more effective procedure is

to attempt to directly draw samples from the underlying distribution rather

than relying on n-best list approximations (Arun et al., 2009, 2010).

MCMC methods, such as Gibbs sampling (Geman and Geman, 1984),

offer a way to overcome the tractability issues in sampling, however their

convergence properties are hard to assess (Gelman et al., 2013). That is, it
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is difficult to know when, if ever, an MCMC sampler produces samples that

are compatible with the goal distribution. MCMC samples are dependent

on each other in that they form a Markov chain. This means that it might

take a long while before the samples can be assumed to provide a close

approximation to the target distribution.

MC methods, such as rejection sampling (Robert and Casella, 2004), are

more fundamental and natural, they can offer strong guarantees, but they

are typically intractable. For instance, in rejection sampling, samples might

be accepted very rarely, that is, the sampler has a very low acceptance rate,

which ultimately implies prohibitively high running times.

A recent technique that stresses a unified view between the two types of

inference tasks discussed here — optimisation and sampling — is the OS∗

approach (Dymetman et al., 2012a). OS∗ can be seen as a cross between

adaptive rejection sampling (an MC method) and A∗ optimisation. In this

view, rather than resorting to pruning in order to cope with the tractabil-

ity issues, one upperbounds the complex goal distribution with a simpler

“proposal” distribution for which dynamic programming is feasible. This

proposal is incrementally refined to be closer to the goal until the maximum

is found, or until the sampling performance exceeds a certain level.

In this thesis optimisation and sampling in SMT are done in an exact way

by addressing search with the OS∗ algorithm. Exactness means that we are

able to find the true optimum (in optimisation) and that we draw samples

from the actual goal distribution (in sampling). In addition, at all times we

have strong guarantees, such as, in optimisation it is always possible to know

how far from the optimum we can be, and in sampling we have an unbiased

estimate of the performance of the sampler (the acceptance rate).

The core of the technique involves lowering the complexity of the inter-

section between the translation hypergraph and the target language model.

Rather than explicitly constructing the full intersection, which defines a dis-
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tribution over derivations p, we incrementally produce a sequence of proposal

hypergraphs that upperbound p, i.e., q(0) ≥ q(t) ≥ · · · ≥ p. This sequence

is such that the first proposal q(0) is obtained by intersecting the translation

hypergraph with a simple automaton that represents an optimistic low-order

version of the full language model. Each proposal after that is obtained

by intersecting the previous one with an automaton that incorporates some

specific k-gram context not yet accounted for.

The idea of using OS∗ to lower the intersection between discrete weighted

sets has been introduced before. Carter et al. (2012) apply OS∗ to sam-

pling/optimisation with high-order HMMs in the context of language mod-

elling. The high-order HMM corresponds to an intractable goal distribution

(a wFSA) which is upperbounded by a sequence of tractable distributions

for which optimisers and samplers can be obtained through standard dy-

namic programming techniques. Their work is related to the work presented

in this thesis. However, note that in comparison to SMT, inference over

language models is a simpler problem. For instance, in language modelling,

words are produced from left to right with no reordering. Dymetman et al.

(2012a) describe a conceptual approach to lower the complexity associ-

ated with the intersection between a probabilistic context-free grammar and

a weighted finite-state automaton using OS∗. Their work serves as inspi-

ration to the work described in this thesis, particularly, in the context of

hierarchical models. However, this thesis goes far beyond: we achieve a

fully-working prototype of an OS∗ decoder/sampler coping with additional

challenges not anticipated in that conceptual description. In addition, we

extend the application of OS∗ to phrase-based SMT attempting to deal with

NP-completeness.

The Contributions of this chapter are the following:

• a novel approach to exact inference in SMT based on lowering the

complexity of the intersection between the translation hypergraph and
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the target language model (Section 4.2);

• an efficient computation of max-backoff weights on a sentence basis

(Section 4.2.2.1);

• tight upperbounds on language model distributions (Section 4.2.2.2).

4.1 OS∗

OS∗ (Dymetman et al., 2012b,a) is a framework for exact inference over

high-dimensional spaces that proposes a unified view of optimisation and

sampling. In the OS∗ approach these two inference tasks are seen as two

extremes in a continuum of inference tasks in Lp spaces (Rudin, 1987), with

sampling associated with the L1 norm, and optimisation with the L∞ norm.

The objective function p, over which inference needs to be performed,

is a complex non-negative function over a discrete or continuous space X,

which defines an unnormalised distribution over X. The goal is to optimise or

sample relative to p, where sampling is interpreted in terms of the normalised

distribution p̄(.) = p(.)/
∫
X
p(x)dx.

Directly optimising or sampling from p is unfeasible; however, it is possi-

ble to define an unnormalised distribution q of lower complexity than p, which

upperbounds p everywhere (i.e. p(x) ≤ q(x),∀x ∈ X), and from which it is

feasible to optimise or sample directly.

4.1.1 Background

We revisit the formal definition of OS∗ introduced by Dymetman et al.

(2012b,a) which is fundamental to the developments introduced in this thesis.

Let p : X → R+ be a measurable function with respect to a base measure

µ on a space X. The quantity ‖p‖1 ≡
∫
X
p(x)dµ(x) is called the L1 norm of

p. We assume that p ∈ L1, that is, ‖p‖1 is finite. We can think of p as an

unnormalised density over X and p̄(x) ≡ p(x)
‖p‖1 its normalised version, which
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defines a probability distribution over X. The probability distribution p̄ is

the goal distribution, that is, the distribution over which one wishes to reason

probabilistically.

Typically, for high-dimensional X, p̄ is too complex to sample from. We

assume, however, that p(x) is easy to assess for any given x ∈ X. We

proceed by rejection sampling (Robert and Casella, 2004) to obtain sam-

ples from p indirectly — by abuse of language when we refer to a sample

from p we actually mean a sample from its normalised version p̄. We de-

fine a lower-complexity unnormalised density q that dominates p, that is,

p(x) ≤ q(x), ∀x ∈ X. This upperbound density q is such that standard dy-

namic programming techniques are feasible and one can sample (or optimise)

from it directly. In other words, q serves as a tractable proxy to p. The fol-

lowing procedure summarises rejection sampling, an MC technique that can

be shown to produce exact samples from p (Robert and Casella, 2004):

1. draw a sample x ∈ X from q;

2. compute the ratio r(x) = p(x)
q(x) , which lies in the interval [0, 1] by construction;

3. with probability r(x) accept x, otherwise reject it; and

4. repeat the process until a reasonable number of samples have been accepted.

This procedure produces samples from p at a rate given by ‖p‖1‖q‖1 known as

the acceptance rate. However, due to p’s complexity, ‖p‖1 is hard to assess.

The average rate at which rejection sampling produces exact samples is an

unbiased estimate of the true acceptance rate and it can be computed directly

for a measurable subset A of X as P (A)
Q(A)

, where P (A) ≡
∫
A
p(x)dµ(x), and

equivalently for Q. Figure 4.1 illustrates a goal density p and an upperbound

proposal q. The sample x1 is likely to be accepted because the ratio r(x1) =

p(x1)/q(x1) is close to 1, while x2 is likely to be rejected due to a low ratio

(note how q(x2) is far above p(x2)). The efficiency of the sampler illustrated
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p
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x1x2
X

Figure 4.1: Rejection sampling

in Figure 4.1, otherwise known as its acceptance rate, is given by the ratio

between the total areas below the curves p and q.

In the context of Lp spaces, sampling and optimisation can be viewed as

two extremes of a continuous range of inference tasks. To elaborate on that

we must first recollect a few definitions from measure theory. If (X,µ) is a

measure space, and f : X → R+ is a real-valued function on this space, the

Lp norm of f , for 1 ≤ p < ∞, is defined as ‖f‖p ≡
(∫

X
|f |p(x)dµ(x)

)1/p
.

The L∞ norm of f is also defined and, for all practical purposes, it can be

thought of as the maximum of f when it exists, i.e. ‖f‖∞ = maxx∈X |f |.1

Dymetman et al. (2012b,a) introduced a generalisation of sampling based

on Lp spaces (to avoid confusion with the goal distribution p, the notation

Lp is changed to Lα). Under such generalisation one performs sampling of

p : X → R+ relative to Lα(X,µ), for 1 ≤ α < ∞, if one samples in the

standard sense, that is, according to the normalised density p̄(x) ≡ p(x)α

‖p‖αα
.

Additionally, one performs sampling of p relative to L∞(X,µ), for α = ∞,

1A more formal definition of the L∞ norm is left aside once the intuition that L∞

corresponds to the maximum suffices the purposes of this thesis. The interested reader
may consult (Dymetman et al., 2012b) for additional considerations or (Rudin, 1987) for
a formal view.
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if one performs optimisation relative to p. The standard notion of sampling

is relative to L1 and optimisation is equivalent to sampling relative to L∞.

Sampling relative to Lα with large α “tends” to optimisation in that the

values of p over samples relative to Lα become closer to the maximum of p

as α increases. That is, as α increases, the samples relative to Lα become

closer to the argmax of p.2

4.1.2 OS∗ sampling

In OS∗ sampling, first a sample x is drawn from q, and then x is accepted or

rejected with probability given by the ratio r = p(x)/q(x). Note that 0 ≤ r ≤
1 by construction. When a sample x from q is rejected, it is used as a basis

for “refining” q into a slightly more complex q′, where p ≤ q′ ≤ q is still an

upperbound to p. This adaptive rejection sampling technique incrementally

improves the rate of acceptance, and is pursued until some rate above a given

threshold is obtained, at which point one stops refining and uses the current

proposal to obtain further exact samples from p.

Figure 4.2a illustrates OS∗ sampling for a goal distribution over the one-

dimensional real line. First the sample x1 is accepted due to a high ratio

r(x1). Then the sample x2 is drawn and rejected due to a low ratio r(x2).

At this point, information about x2 is used to refine q into a q′, such that

p(x) ≤ q′(x) ≤ q(x). Note that the proposal is brought closer to p leading to

a better acceptance rate. The search may stop at this point if the acceptance

rate has reached a certain threshold, or we continue sampling and refining

on rejects.

2Such unified viewpoint is also implicitly shared by simulated annealing (Kirkpatrick
et al., 1983) – an optimisation technique that capitalises on the idea of sampling with
increasingly larger α.
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Figure 4.2: OS∗ modes

4.1.3 OS∗ optimisation

Following the generalised idea of sampling, in optimisation one samples rel-

ative to L∞. That is, one finds the maximum x relative to the proposal q,

and again computes the ratio r = p(x)/q(x). If this ratio equals 1, then it

is easy to show that x is the actual maximum from p: if there existed x′

such that p(x′) > p(x), then q(x′) ≥ p(x′) > p(x) = q(x), and hence x would

not be a maximum for q, a contradiction. Otherwise the proposal is refined

in a similar way to the sampling case, continuing until a ratio equal to 1 is

found (or very close to 1, if one is willing to accept an approximation to the

maximum). For finite spaces X, this optimisation technique is argued to be

a generalisation of A∗ (Hart et al., 1968).3

Figure 4.2b illustrates OS∗ optimisation for a goal distribution over the

one-dimensional real line. First x1 is found as the maximum of q and rejected

due to the low ratio r(x1), otherwise interpreted as a large gap between q and

p at x = x1. We refine the proposal obtaining q′, whose maximum x2 is lower

than x1, thus closer to the true maximum x∗. If we are willing to accept

an approximate solution, and the gap between q′ and p at x2 is sufficiently

3Refer to (Dymetman et al., 2012b,a) for additional considerations.
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small, i.e. r(x2) is sufficiently close to 1, the search may stop at this point,

otherwise we proceed by refining the proposal.

4.1.4 Remarks

Refinement operations are similar in both modes of OS∗, however they serve

different purposes by aiming at different objectives.

In sampling the objective of the refinements is to minimise the L1 norm of

q′, while making it only slightly more complex than q — always maintaining

q′ as an upperbound to p. In optimisation the objective is to minimise

the L∞ norm of q′, while making it only slightly more complex than q —

again always preserving q′ as an upperbound to p. What these refinement

operations look like and how they are chosen will be addressed in Section

4.2.3 when we introduce an OS∗ approach to SMT. Note that, intuitively,

OS∗ sampling focuses the “search effort” on minimising the area between

the proposal and the goal distribution, while OS∗ optimisation focuses on

lowering the proposal’s maximum so that it meets the goal.

4.2 An OS* approach to SMT

In this section we introduce a novel approach to exact inference in SMT using

OS∗.

Recapitulating from Section 2.4.1, G(x) is the weighted set of all possible

translations of the input x.4 At this point let us assume that G(x) is tractable

and acyclic.5 Decoding requires the computation of G(x) ∩ A, where A is a

4For an input sentence x, G(x) is (ideally) obtained by the composition (X ◦ G) ↓,
where X is the identity-transducer of the set {x}, G is a compact representation of the
translation rules, and ↓ represents the output/target projection. In context-free models, G
is a synchronous context-free grammar. In finite-state models, G is a cascade of finite-state
transducers that encodes phrase segmentation, phrase translation and reordering. In both
cases, G(x) is equivalent to a hypegraph.

5Chapter 6 shows that for finite-state models, tractability is a too strong assumption
in the general case due to arbitrary reordering.
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finite-state automaton that represents an n-gram language model distribution

over strings of the target language. It is also convenient to assume that

for simple deterministic automata (with few states) an efficient intersection

procedure is known — an argument that will be elaborated in Chapters 5

and 6.

The complexity of building the full intersection G(x) ∩ A is related to

the fact that the number of states of A grows exponentially with the order

n of the language model. Chapter 5 shows that in the case that G(x) is

a weighted context-free grammar, G∩A = G(x) ∩ A is also a context-free

grammar, and that each nonterminal N in G(x) tends to generate many

indexed nonterminals of the form Ni j in the grammar G∩A, where i, j are

states of A and the nonterminal Ni j can be interpreted as an N connecting

an i state to a j state. A similar argument can be made for finite-state

models.

In our approach, instead of explicitly constructing the full intersection

G(x) ∩ A, which, using the notation of Section 4.1, is identified with the

unnormalised goal distribution p(d), we incrementally produce a sequence of

“proposal” distributions q(t), which all upperbound p, where q(0) = G(x) ∩
A(0), . . . , q(t+1) = q(t) ∩ A(t), etc. Here A(0) is an optimistic, low complexity,

“unigram” version of the automaton A, and each increment A(t) is a small

automaton that refines q(t−1) relative to some specific k-gram context (i.e.

sequence of k words) not yet made explicit in the previous increments, where

k takes some value between 1 and n. This process produces a sequence of

proposals such that q(0)(·) ≥ q(1)(·) ≥ q(2)(·) ≥ · · · ≥ p(·).

In the limit
⋂M
t=0A

(t) = A for some large M , so that we are in principle

able to reconstruct the full intersection p(·) = q(M) = G(x)∩A(0)∩· · ·∩A(M) in

finite time. In practice our actual process stops much earlier: in optimisation,

when the value of the maximum derivation d∗ relative to q(t) becomes equal

to its value according to the full language model; in sampling when the
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Algorithm 6 OS∗ for SMT
1: t← 0, converged← false . in sampling also does AR← 0
2: q(0) ← G(x) ∩A(0)

3: while not converged do
4: d← search(q(t)) . argmax or sample
5: r ← p(d)/q(t)(d)

6: accept← assess(r) . deterministic in optimisation, random in sampling
7: if not accept then . if d was rejected
8: define A(t+1) based on d and q(t)

9: q(t+1) ← q(t) ∩A(t+1) . update proposal
10: t← t+ 1
11: end if
12: converged← update(r, accept) . in sampling this also updates AR
13: end while
14: return accepted samples along with q(t)

acceptance rate of samples from q(t) exceeds a certain threshold.

Algorithm 6 illustrates the application of OS∗ to SMT. In line 1, the time

step is initialised to 0. In sampling the initial acceptance rate (AR) is also

set to 0. In line 2, the initial proposal q(0) is the result of intersecting G(x)

with A(0).

In line 3 we start a loop: in optimisation we stop when we have found an

x that is accepted, meaning that the maximum has been found; in sampling

we stop when the estimated acceptance rate (AR) of the current proposal q(t)

exceeds a certain threshold (e.g. 20%). This AR can be roughly estimated

by observing how many of the last (say) one hundred samples have been

accepted, and tends to reflect the actual acceptance rate obtained by using

q(t) without further refinements. These monitors are updated at the end of

each iteration, in line 12.

In line 4, in optimisation, we find the derivation d that maximises the

proposal, and in sampling we draw a sample d from the proposal.6 In line 5,

6See in Section 4.1.1 that, following the OS∗ approach, taking an argmax is actually
associated to an extreme form of sampling, with an L∞ space taking the place of an L1

space. We may also sample with α > 1, exploring other Lα spaces — for the reader
familiar with simulated annealing, α is the inverse of the temperature and controls how
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we compute the ratio r = p(d)

q(t)(d)
. Remember that by construction q(t) is an

optimistic version of p, thus 0 ≤ r ≤ 1.

In line 6, in optimisation we accept d if the ratio r is equal to 1, in

which case we have found the maximum, and in sampling we accept d with

probability r.7 This form of adaptive rejection sampling guarantees that

accepted samples form exact samples from p (Robert and Casella, 2004).

If d is rejected (line 7), we (lines 8 and 9) refine q(t) into a q(t+1) such

that p(·) ≤ q(t+1)(·) ≤ q(t)(·) everywhere. This is done by defining the incre-

mental automaton A(t+1) on the basis of x and q(t) (see Section 4.2.3), and

by intersecting this automaton with q(t).

Finally, in line 14, in optimisation we return the d which has been ac-

cepted, namely the maximum of p, and in sampling we return the list of

already accepted d’s, which form an exact sample from p. We also return

the current q(t), which can be used directly in sampling as a rejection sam-

pler to produce further exact samples with an acceptance rate performance

above the predefined threshold. In optimisation the current q(t) can be used

to produce an n-best list. This n-best list can be approximate, in case one

searches for the n-best solutions from q(t) without further refinements. Or it

can be exact: (i) first remove the current best solution from q(t) (via inter-

section); then (ii) restart the loop in line 3 of Algorithm 6, iterating until the

the next best solution is proven; and (iii) repeat steps (i) and (ii) until the

exact n-best solutions have been found.

4.2.1 Upperbound on LM distribution

Let plm be an n-gram language model distribution and w an upperbound to

plm, that is, w(·) ≥ plm(·) everywhere. The distribution w can be defined in

flat/peaked the distribution is.
7In optimisation, we control the search with a parameter 0 < ε ≤ 1, accepting d if

r ≥ ε. Note that, if ε = 1, we iterate until the true maximum is found. Otherwise, if we
are willing to accept an approximate solution, we can choose 0 < ε < 1.
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terms of plm as shown in Equation 4.1, where (P, z), also denoted by Pz, is a

string of n words in the vocabulary Σ of the language model, z is the string’s

last word and P is z’s prefix of length (n− 1) words.

w(z|P ) = max
h∈Σ∗

plm(z|hP ) (4.1)

The term plm(z|hP ) is the conditional probability of the n-gram (hP, z).

Maximisation happens over all possible histories, that is, all possible se-

quences of words that may precede Pz in a sentence. Intuitively, w(z|P )

assigns to the string Pz the LM probability which is that of Pz in its most

promising context.

The computation of plm for a string of arbitrary length is a recursive

procedure that factorises in terms of the entries in a standard ARPA table

for n-gram language models (Jurafsky and Martin, 2000). In an ARPA table,

n-grams are stored in ascending order of length (lower-order n-grams first).

Each entry in the table is a tuple consisting of (1) an n-gram string Pz, (2)

the n-gram’s conditional probability denoted by Pz.p, and (3) the n-gram’s

backoff weight denoted by Pz.b. Given an ARPA table T , the conditional

probability plm(z|P ) for an arbitrary sequence Pz is computed as shown in

Equation 4.2, where tail(P ) is the string resulting of the deletion of P ’s first

word. Note that P ’s backoff weight P.b is used when the entry Pz is not

explicitly listed in the table, but the prefix P is.

plm(z|P ) =


plm(z|tail(P )) if Pz 6∈ T and P 6∈ T
plm(z|tail(P ))× P.b if Pz 6∈ T and P ∈ T
Pz.p if Pz ∈ T

(4.2)

In the case of a language model of maximum order n, the probability

w(z|P ) is sensitive to all sequences of up to n − 1 words. In the worst

case, the maximisation in Equation 4.1 would require applying the recursive

Equation 4.2 a number of times proportional to O(|Σ|n−1). Carter et al.
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Algorithm 7 Max-ARPA: first pass
1: for P in T do
2: P.m ← 1
3: for x in Σ s.t xP in T do
4: P.m← max(P.m, xP.b× xP.m)
5: end for
6: end for

(2012) noticed that w factorises in terms of something they called max-

backoff weights allowing a fast computation of w for a string of arbitrary

length, shown in Equation 4.3. They designed an efficient offline compu-

tation of these weights from a standard ARPA table and stored the result

in what they called a “Max-ARPA” table, an extension of the original for-

mat that accommodates two additional factors: an optimistic view on the

n-gram conditional probability denoted by Pz.w, and an optimistic view on

the backoff weight denoted by Pz.m. These two factors can be computed

in two passes over the standard ARPA table in descending order of n-gram

length (higher-order n-grams first), as shown in Algorithms 7 and 8.8

w(z|P ) =


plm(z|P ) if Pz 6∈M and P 6∈M
plm(z|P )× P.m if Pz 6∈M and P ∈M
Pz.w if Pz ∈M

(4.3)

In the first pass the optimistic backoff weight is computed and stored for

each entry P . In the second pass the optimistic conditional probability is

computed for each entry Pz in T. Note that maximisation happens over the

1-word context x ∈ Σ, i.e., all the words in the vocabulary covered by the

language model. Also, in the second pass, if a sequence xPz is not listed in

the table, the algorithm backs off to xP .

Equation 4.3 shows the efficient computation of w factorised in terms of

the max-backoff weights and plm. This computation requires at most one

8Algorithm due to Marc Dymetman, personal communication.
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Algorithm 8 Max-ARPA: second pass
1: for Pz in T do
2: Pz.w ← Pz.p
3: for x in Σ s.t xP in T do
4: if xPz in T then
5: Pz.w ← max(Pz.w, xPz.w)
6: else
7: Pz.w ← max(Pz.w, Pz.p× xP.b× xP.m)
8: end if
9: end for

10: end for

call to Equation 4.2, which is resolved in at most |P | recursions. This is a

significant improvement compared to the worst case of Equation 4.1, which

would require O(|Σ|n−1) calls to Equation 4.2 (which is itself recursive). Note

that if the sequence Pz is listed in the Max-ARPA table M , the value Pz.w

is directly returned, since it represents the probability of Pz in its most

promising context. Otherwise, if Pz is not in M , but P is, the algorithm

resorts to plm(z|P ) and scales it by the optimistic view of P ’s backoff weight.

Finally, if neither Pz nor its prefix P are listed in M , there is no reason to

look for an optimistic view on the string and plm(z|P ) is returned.9 A formal

proof that this procedure complies with the specification that w dominates

plm is presented in (Dymetman, 2013).

4.2.2 Initial proposal

The initial proposal q(0) is the result of intersecting the translation hyper-

graph G(x) with an automaton that represents an optimistic view of the full

language model A. This initial automaton A(0) is a deterministic automaton,

and it is simpler than A in that it only records information about unigrams.

A(0) has only one state q0, which is both initial and final. For each word y

9This is only true when the original ARPA table respects the property that if an n-
gram is in the table, all of its substrings are also in the table. For certain LM pruning
strategies that do not guarantee this property, the table must be extended to account for
the missing substrings explicitly.
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of the target language it has a transition 〈q0, y, q0〉 whose weight is denoted

by w(y).10

An important observation that leads to tighter max-backoff weights is that

we can restrict histories — in Algorithms 7 and 8 — to words that appear in

G(x), that is, rather than assuming that every word in the target vocabulary

might precede z we consider only a subset of those made of unigrams that

are compatible with the rules in G(x).

A tighter upperbound means that the initial proposal q(0) is closer to p,

which in turn means that the area between the two surfaces is smaller. In

sampling this means that we start at a better acceptance rate. In optimisa-

tion, q(0)’s maximum is closer to p’s maximum and we are left with a smaller

gap to be incrementally reduced.

On the one hand we start from a better proposal, on the other hand the

Max-ARPA computation depends onG(x) and can no longer be precomputed

once from the full ARPA table. We propose an efficient algorithm to compute

the Max-ARPA table on a sentence basis (Section 4.2.2.1) tightening the

initial proposal based on the active vocabulary of unigrams in G(x). We also

propose an efficient algorithm to tighten the initial proposal based on the

active vocabulary of bigrams in G(x) (Section 4.2.2.2).

4.2.2.1 Sentence basis Max-ARPA

An ARPA table can be compactly and conveniently represented in memory

or in disk as a trie (Germann et al., 2009). A trie (Fredkin, 1960), or prefix

tree, is a tree-structured transition graph that can be seen as a deterministic

finite-state automaton. Each node of a trie is associated with a unique string

given by the concatenation of the labels in the transitions along the unique

path from the root to the node in consideration. The string along the path

can be seen as a key and the node may store a value. Thus, a trie is a well-

10We use w(P, y) to denote the conditional probability w(y|P ). In cases where P is the
empty string ε, we write w(y).
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Figure 4.3: Example of a trie

established data structure to compactly store key-value pairs where the keys

often share prefixes. Insertion and lookup are proportional to O(m) where

m is the length of the key. Figure 4.3 illustrates a small trie, the initial state

is indicated with an arrow and final states are represented by double circles.

For example, state 5 represents the string bc and state 6 represents the string

bd.

A trie-encoded ARPA table can be thought of as a tree in which nodes (or

states) represent n-grams. The root, the initial state of the trie, represents

the empty string ε. Transitions are labelled with words in the vocabulary

Σ of the language model, therefore, states have a one-to-one correspondence

with n-grams, i.e. entries in the table.11 Final states contain information

about the n-grams they represent, such as the n-gram probability and its

backoff weight. Moreover, in language modelling, it is convenient to perform

lookup in suffix order, thus strings are inserted in reversed order (Stolcke,

2002; Federico et al., 2008; Heafield, 2011). Tries used like that are often

called “reverse tries”.

In order to efficiently compute a Max-ARPA table whose weights are

11For unpruned language models, every state in a trie — not only the leaves — is final,
except maybe for the initial one.
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Algorithm 9 Filtering an ARPA table to a set of active unigrams.
1: function Query(prefix, U, T, LM)
2: E ← T[prefix] . entry in the trie that corresponds to the prefix
3: if E not None then
4: if E.final then . final states contain information about n-grams
5: LM[prefix] = (E.p, E.b) . ARPA weights
6: end if
7: C ← E.outgoing . all 1-word continuations of the prefix
8: for c in U ∩ C do . retain only the active words
9: Query(prefix + [c], U, T, LM) . query the extended prefix

10: end for
11: end if
12: end function
13: function Filter(U,T)
14: LM ← MemoryTrie()
15: unk ← Set()
16: for x in V do
17: if x in T.root.outgoing then
18: Query([x], U, T, LM)
19: else
20: unk.add(x)
21: end if
22: end for
23: return LM, unk
24: end function

tighter in that they are computed on the basis of the active vocabulary

of unigrams U in G(x), we can collect from the ARPA table only the n-

grams that are compatible with U and then rely on Algorithms 7 and 8 in

Section 4.2.1. Algorithm 9 shows an efficient procedure to collect from a large

ARPA table T , encoded as a trie in disk (with efficient lookup algorithms),

a smaller ARPA table LM , encoded as a trie in memory, that contains all

n-grams compatible with U , that is, n-grams whose words are all in U . The

algorithm visits the states of the trie that are compatible with U copying

them to the memory trie. The number of states visited is bounded by the

maximum number of n-grams compatible with strings in G(x), that is, |U |n.
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Algorithm 10 Filtering an ARPA table to a set of active bigrams.
1: function QUERY(prefix, U, B, T, LM)
2: E ← T[prefix] . entry in the trie that corresponds to the prefix
3: if E not None then
4: if E.final then . final states contain information about n-grams
5: LM[P] = (E.p, E.b) . ARPA weights
6: end if
7: C ← E.outgoing . all 1-word continuations of the prefix
8: for c in U ∩ C do . retain only the active words
9: last ← prefix[-1]

10: if (last,c) in B then . retain only the active bigrams
11: QUERY(prefix + [c], U, B, T, LM) . query extended prefix
12: end if
13: end for
14: end if
15: end function

4.2.2.2 Tighter proposals

We can further improve the tightness of our proposal by relying not only on

the set of active unigrams U in G(x), but also on the set of active bigrams.

The strings in G(x) are compatible with a subset of the bigrams in U × U .

While in principle this subset could actually coincide with the whole set

U × U , it is typically much smaller, meaning that for any given unigram

z ∈ U , the set of possible 1-word contexts such that hz is compatible with

a string in G(x) is much smaller than U . Suppose that B is the set of all

bigrams that can participate in strings of G(x). Then the recursive call to

QUERY in line 9 of Algorithm 9 could be conditioned on (h, c) belonging to

B, as shown in Algorithm 10 (line 10).

Sections 5.4 and 6.5 discuss how we compute B for context-free and finite-

state models, respectively.

4.2.3 Incremental refinements

The weight assigned to any target sentence by A(0) is larger or equal to

its weight according to A. Recall that A is the automaton associated with
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Figure 4.4: Down-weighting a in the context of b

the full language model distribution. Therefore, the initial proposal q(0) =

G(x) ∩ A(0) is optimistic relative to the goal p = G(x) ∩ A. That is, for any

solution d in p, we have p(d) ≤ q(0)(d). We can then apply the OS∗ technique

with q(0). In the case of optimisation, this means that we find the solution d

for which q(0) is maximum. By construction, with y = y[d] (the string that d

projects onto), we have A(0)(y) ≥ A(y). If the two values are equal, we have

found the maximum,12 otherwise there must be a word yi in the sequence

y = ym1 for which plm(yi|yi−1
1 ) is strictly smaller than w1(yi).

13 Let us take

among such words the one for which the ratio α = w2(yi|yi−1)/w1(yi) ≤ 1 is

the smallest, and for convenience let us rename b = yi−1, a = yi. We then

define the (deterministic) automaton A(1) as illustrated in Figure 4.4.

In A(1), the state q0 is both initial and final, and the state q1 is final. All

edges carry a (multiplicative) weight equal to 1̄, except edge 〈q1, a, q0〉, which

carries the weight α. The abbreviation “else” refers to any label other than

b when starting from q0, and other than b or a when starting from q1.

It is easy to check that this automaton assigns to any word sequence y

a weight equal to αk, where k is the number of occurrences of b a in y. In

particular, if y is such that yi−1 = b, yi = a, then the transition in (the

deterministic automaton) A(0) ∩ A(1) that consumes yi carries the weight

α w1(a), in other words, the weight w2(a|b). Thus the new proposal q(1) =

12This case is very unlikely with A(0), but helps introduce the general case.
13Here the index n in wn(σ) highlights the order of the n-gram σ.
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q(0)∩A(1) has now “incorporated” knowledge of the bigram a-in-the-context-

b, at the cost of some increase in its complexity.14

The general procedure for choosing A(t+1) follows the same pattern. We

find the maximum d in q(t) along with its yield y. If p(d) = q(t)(d), we stop

and output d. Otherwise, we find some subsequence yi−m−1, yi−m, ..., yi such

that the knowledge of the n-gram yi−m, ..., yi has already been registered

in q(t), but not that of the n-gram yi−m−1, yi−m, ..., yi (this bookkeeping is

explained in Section 4.2.4), and we define an automaton A(t+1) which assigns

to a sequence a weight αk, where

α =
wm+1(yi|yi−m−1, yi−m, ..., yi−1)

wm(yi|yi−m, ..., yi−1)
(4.4)

and where k is the number of occurrences of yi−m−1, yi−m, ..., yi in the se-

quence.15

We note that we have p ≤ q(t+1) ≤ q(t) everywhere, and also that the

number of possible refinement operations is bounded. This is so because at

some point we would have expanded all contexts to their maximum order, at

which point we would have reproduced p(·) on the whole space D of possible

solutions exactly. However, we typically stop much earlier than that, without

expanding contexts in the regions of D which are not promising even on

optimistic assessments based on limited contexts.

Following the OS∗ methodology, the situation with sampling is com-

pletely analogous to that of optimisation. However, instead of finding the

solution d for which q(t) is maximum, we draw a sample d from the dis-

14Note that without further increasing q(1)’s complexity one can incorporate knowledge
about all bigrams sharing the prefix b. This is because A(1) does not need additional
states to account for different continuations of the context b. All one needs is to update
the weights of the transitions leaving state 1 appropriately. More generally, it is not more
costly to account for all 1-word continuations of a k-gram prefix than it is to account for
only one of them.

15Building A(t+1) is a variant of the standard construction for a “substring-searching”
automaton (Cormen et al., 2001) and produces an automaton with n states (the order of
the n-gram).
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tribution associated with q(t), then accept it with probability given by the

ratio r = p(d)/q(t)(d) ≤ 1. In the case of a reject, we identify a subsequence

yi−m−1, yi−m, ..., yi in y[d] as in the optimisation case, and similarly, refine q(t)

into q(t+1) = q(t) ∩ A(t+1). The acceptance rate gradually increases because

q(t) comes closer and closer to p. We stop the process at a point where the

current acceptance rate, estimated on the basis of, say, the last one hundred

trials, exceeds a predefined threshold, such as 20%.16

4.2.4 Bookkeeping

A key operation in OS∗ is the update, or refinement, of the current proposal

q(t). As discussed in earlier sections, we upperbound the language model

distribution A starting from an optimistic unigram LM distribution A(0).

That is, A(0) is a proposal LM distribution. To avoid confusion, when we

refer to “the proposal” we mean the hypergraph proposal q(t) used as proxy

to the goal distribution p. On the other hand, when we refer to “the proposal

LM” we mean an implicit automaton that represents the current state of the

upperbound language model distribution, and we denote it as At0. Note that

at some iteration t, q(t) = G(x)∩A(0)∩A(1)∩· · ·∩A(t), and At0 =
⋂t
i=0 A

(t) is

the implicit intersection of all refinements since the beginning of the search.

We stress the word “implicit” because in practice the upperbound weights

are incorporated directly in the hypergraph via incremental intersections.

In Section 4.2.3, it was explained that a refinement A(t) incorporates

more realistic n-gram weights. It lowers the upperbound by expanding some

k-gram context not yet incorporated in the proposal LM At−1
0 . In order to

identify which contexts have not yet been accounted for, one needs to keep

track of the contexts that have been incorporated in past iterations since

16Instead of designing A(t+1) on the basis of a single sample derivation, we may sample
a batch of (say) one hundred samples. This way we gather better statistics about overop-
timistic n-grams that are likely to participate in derivations sampled from the current
grammar.

88



CHAPTER 4. EXACT INFERENCE IN SMT WITH OS∗

the beginning of the search. This bookkeeping is performed in a very simple

manner utilising a trie to compactly store information about the n-grams

incorporated in the search. In a way, this trie gives a view of the proposal

LM. Formally, the trie is not equivalent to the automaton that represents

A(0) ∩ A(1) ∩ · · · ∩ A(t). However, it does contain the information about the

n-grams that have been explicitly represented in the proposal LM and their

(upperbound) weights. One can think of this trie as an ARPA table, how-

ever, this ARPA table is optimistic with respect to the true language model

and it initially factorises in terms of unigrams. As the algorithm proceeds

incorporating some higher-order n-grams, this trie evolves to represent a

variable-order LM proposal distribution.

The trie used to bookkeep n-gram information over a vocabulary Σ is

equivalent to a tree-structured deterministic automaton T = 〈Σ, Q, I, F, E〉.
It has a single initial state, I = {q0}, and every state in the trie is final,

F = Q. E is an unweighted set of transitions such that the set of paths

from the trie’s initial state q0 to any given state q ∈ F , P (q0, q) ⊆ E∗, is

a singleton. Thus, there is a one-to-one correspondence between paths and

strings, meaning that the set of all valid paths P (I, x, F ) that recognise a

string x ∈ Σ∗ is also a singleton. Therefore, each state q ∈ Q is associated to

a unique string in Σ∗ recognised by the path from q0 to q. To bookkeep the

information we need, each and every state q ∈ Q is associated with a k-gram

conditioning context α ∈ Σk given by the reverse of the string recognised by

the unique path from q0 to q. Moreover, each state stores a function that

maps a word z ∈ Σ to the upperbound weight w(z|α), otherwise denoted

by wk+1(αz). Formally, if π = 〈e1, e2, . . . , ek〉 is a path in the trie, where

ei is a transition, the path’s origin p[π] = q0 is the trie’s initial state, and

α = 〈i[ek], i[ek−1], . . . , i[e1]〉 is the reverse of the string recognised by π, then

the path’s destination state n[π] holds the function wk+1(αz) that weights

all 1-word continuations z ∈ Σ of the k-gram context α.
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1:{z 7→ w2(bz)}

3:{z 7→ w2(az)}

6:{z 7→ w4(dcbz)}

2:{z 7→ w2(cz)}

4:{z 7→ w3(cbz)}

5:{z 7→ w3(acz)}0:{z 7→ w1(z)}

Figure 4.5: Trie used to bookkeep the n-grams in the proposal LM

The initial state stores upperbound weights of words conditioned on an

empty context, that is, the unigrams. Thus, the trie associated with A0
0 con-

tains a single state, which is initial and final, and stores the unigram upper-

bound weights w1(z). Figure 4.5 illustrates a trie used to bookkeep n-gram

information over the vocabulary Σ = {a, b, c, d, e}. It stores all the 1-word

continuations of the k-gram contexts ε, a, b, c, ac, cb and dcb, as illustrated

by the mappings inside of the nodes. In OS∗, one starts from a unigram

proposal LM and incorporate higher-order n-grams as necessary leading to a

variable order representation where n-grams are always extended to the left.

Therefore, it is convenient to represent reversed contexts in the trie. At any

moment, given a derivation d whose yield y is the string y1y2 . . . ym, one can

quickly retrieve the longest suffix of y1y2 . . . ym−1 represented in the trie by

first reversing it ym−1ym−2 . . . y1 and then recognising the longest prefix (of

this reversed suffix) that is compatible with the trie.
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4.3 Experiments

For the experiments reported in this section we used the German-English

portion of the 6th version of the Europarl collection (Koehn, 2005). In all

experiments, we used the Moses toolkit (Koehn et al., 2007) to extract a

wSCFG following Chiang (2005).17 Language models were trained by lmplz

(Heafield et al., 2013) using the English monolingual data made available by

the WMT (Callison-Burch et al., 2012). That is, Europarl, newscommen-

taries, news-2012 and commoncrawl. The models extracted from different

monolingual corpora were combined via interpolation using newstest2010 as

the development set. In all experiments, parameter estimation was performed

via MERT on the newstest2010 development set using single reference BLEU

as the oracle. Finally, from the newstest2011 test set, we randomly selected

sentences according to their length. We sampled 20 examples for each class

of length from 1 to 30 words.

In this section we compare three strategies to obtain an upperbound on

a bigram LM distribution. One strategy is to produce a Max-ARPA table

directly from a complete ARPA table, which represents a form of corpus

level computation. Recall that a Max-ARPA table factorises the computation

shown in Equation 4.1 in terms of max-backoff weights as shown in Equation

4.3. This table is obtained once and used as is for every sentence. Another

strategy is to produce a Max-ARPA table for each sentence on the basis of

the active target vocabulary in the grammar G(x). The intuition is that

by considering only a subset of the target vocabulary in the full LM, the

upperbound obtained should be tighter. A tighter upperbound on the LM

distribution leads to q being a closer approximation to q and ultimately

reduces the number of iterations for convergence to an optimum or to a

minimum acceptance rate level. In the following, we tighten the upperbound

17We extracted grammars containing at most two nonterminals on the right-hand side
and at most 10 target productions for a given source production.
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Figure 4.6: Sentence basis Max-ARPA

on the basis of the vocabulary of active unigrams in G(x) which we denote

by U . Because we have efficient algorithms to enumerate the bigrams in

G(x) (see Sections 5.4 and 6.5), we can also go one step further and limit

the Max-ARPA computation to n-grams compatible with the vocabulary B

of bigrams in G(x).

Computing a Max-ARPA table for each sentence requires filtering an

ARPA table to the active target vocabulary associated with each sentence’s

translation hypergraph. A näıve strategy is to visit each and every entry

of the ARPA table retaining only the n-grams compatible with U . Such

algorithm runs in time proportional to the size of the ARPA table, which

is inefficient for any reasonably sized language model. The complexity of

our solution is bounded by the maximum number of n-grams in the filtered

table, that is, |U |n (see Section 4.2.2.1). Figure 4.6 shows the average time

necessary to build a Max-ARPA table on a sentence basis as a function

of the input length. Observe how the time appears to grow quadratically

with the length of the sentence. This is the case because the size of the
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Figure 4.7: Initial acceptance rate with different upperbounds

vocabulary is typically linear with the input length and filtering the ARPA

table of a bigram language model (see Algorithm 9) runs in time O(|U |2).

The construction in Figure 4.6 involves: (1) running Algorithm 9 to obtain

a small “active ARPA” table whose n-grams contain only words in U ; and

(2) computing max-backoff weights as shown in Algorithms 7 and 8.

Figure 4.7 shows how the different upperbounds affect the acceptance rate

of the initial proposal. We can clearly see that restricting the Max-ARPA

computation to the active vocabulary in G(x) improves the tightness of the

upperbound. There is a large gain moving from no filtering at all (corpus)

to considering the set of unigrams. There is a modest gain moving from

unigrams to bigrams. Beyond 20 words the initial acceptance rate is neg-

ligible in all cases. However, tighter upperbounds do not only increase the

initial acceptance rate, they also lead to fewer iterations before convergence

to a goal because the proposal q starts closer to p. For example, Figure 4.8

shows how much each upperbound overestimates the score of the optimum

derivation d∗. The y-axis represents the gap (in the log domain) between
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Figure 4.8: Gap (in the log domain) between p(d∗) and q(0)(d∗) with different
upperbounds

p(d∗), the true score of the true optimum, and q(0)(d∗), the true optimum

assessed by the initial proposal distribution. We can clearly see that tight-

ening the upperbound to the vocabulary of the grammar helps lowering the

gap between p and q.
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Chapter 5

Hierarchical phrase-based translation

with OS∗

In this chapter we introduce an OS∗ approach to exact inference for hier-

archical phrase-based translation models such that of Chiang (2005). For

convenience, we first introduce the hierarchical case to avoid having to deal

at first with NP-completeness. The phrase-based case is introduced in Chap-

ter 6.

Based on OS∗ (Dymetman et al., 2012b,a) and our application of OS∗ to

SMT presented in Section 4.2, the contributions we present in this chapter

are the following:1

• a novel approach to exact inference (optimisation and sampling) for

hierarchical phrase-based translation models (Section 5.2);

• an algorithm for incremental intersection between wCFGs and wFSAs

(Section 4.2.3). This algorithm capitalises on the incremental aspect of

the refinements that incorporate additional context to the proposals;

• an algorithm to selectively intersect a wCFG with a wFSA expand-

ing the grammar only in high-probability regions by taking into account

the marginal probability of the productions in the original grammar

(Section 5.3.2).

1An earlier and more concise version of this chapter was published at the 8th Workshop
on Statistical Machine Translation (Aziz et al., 2013).
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5.1 Hierarchical phrase-based SMT

In hierarchical phrase-based translation, the underlying model is represented

by a wSCFG (Chiang, 2005, 2007). That is, G inG(x) = (X◦G) ↓ (see Section

2.5) is a wSCFG. The translation hypergraph G(x) (also known as a transla-

tion forest) is obtained by applying G to the input sentence, in other words,

by the composition (a generalisation of intersection for transducers, see Sec-

tion 2.1.3.3) between the input x, represented as the identity-transducer X ,

and the synchronous grammar G. Because X is acyclic and our hierarchical

model does not allow unbounded insertion, the resulting grammar G(x) is

also acyclic (Chiang, 2005). Moreover, limiting productions in G to having up

to two nonterminals on their right-hand side, the number of rules in G(x) is

proportional to O(I3), where I is the number of words in the input sentence

(Wu, 1995).

Decoding requires re-weighting the translations in G(x) by the language

model A. The space of solutions is given by the intersection G∩A = G(x)∩A,

which is itself a wCFG and represents the goal distribution p over which

we want to perform inference. The intersection between a wCFG and a

wFSA has polynomial theoretical bounds, but is nevertheless prohibitive to

compute exactly due to mostly two reasons. First, the number of states

of A grows exponentially with the order n of the language model. Second,

each nonterminal N in G(x) tends to generate many indexed nonterminals

of the form Ni j in the grammar G∩A, where i and j are states of A and the

nonterminal Ni j can be interpreted as an N connecting state i to state j.

The goal distribution p(d) = G(x) ∩ A is typically intractable even for

language models of order 2 and one commonly resorts to approximations

such as cube-pruning (Chiang, 2007). In Section 5.2, we introduce a novel

approach to exact inference over p using OS∗. This approach enables exact

optimisation and exact sampling by capitalising on a sequence of tractable
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proxies to p.

5.2 An OS∗ approach to HPB-SMT

We introduce an approach where instead of explicitly constructing the full

intersection G(x) ∩ A, which is identified with the unnormalised goal distri-

bution p(d), we incrementally produce a sequence of “proposal” grammars

q(t). These proposals are such that q(0) = G(x) ∩A(0), q(1) = q(0) ∩A(1), . . . ,

q(t+1) = q(t) ∩ A(t+1), etc. A(0) is an optimistic, low complexity, “unigram”

version of the automaton A. Each increment A(t) is a small automaton that

incorporates to q(t−1) some specific k-gram context (i.e. sequence of k words)

not yet made explicit in the previous increments, where k takes some value

between 1 and n. This process produces a sequence of proposals such that

q(0)(·) ≥ q(1)(·) ≥ q(2)(·) ≥ · · · ≥ p(·).
For this to work it is essential that an efficient intersection procedure

is known. We introduce a novel incremental intersection algorithm based

on “Earley intersection” (Dyer, 2010). Our procedure capitalises on the

incremental aspect of the refinements.

To achieve faster intersections it is necessary to control the size of the

grammar. This can be done by carefully intersecting the grammar with the

automaton, not everywhere, but rather in regions that are likely to partici-

pate in high-scoring derivations. We introduce a new algorithm that explores

information from the current grammar, such as the rule marginal probabil-

ities, to perform a selective intersection. In this selective intersection, addi-

tional context is incorporated only in high-probability regions of the gram-

mar. That is, regions that are low-probability even on optimistic assessments

are left at a lower-order representation with respect to the n-gram language

model. Note that this does not characterise as pruning, since no edges are

removed from the proposal hypergraphs. Instead, they are simply left at a

lower-order representation, and they are only expanded when proven neces-
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sary.

5.3 Intersecting grammars and automata

In their classical paper, Bar-Hillel et al. (1961) showed that the intersection

of a CFG with an FSA is a CFG. Their construct is an exhaustive procedure

in which rules from the input CFG are annotated with pairs of states that can

be connected through a path in the input FSA. That is, context-free rules

of the form X → α1 . . . αk, where X ∈ V and αi ∈ Σ ∪ V are annotated

with states qi ∈ Q producing Xq0 qk
→ α1q0 q1

α2q1 q2
. . . αkqk−1 qk

for all possible

sequences of states q0 . . . qk. A symbol of the kind Xq r , with X ∈ V and

q, r ∈ Q, represents a nonterminal X spanning a path in the FSA from q to

r. In addition, for each symbol xq r in a rule, where x is a terminal, if 〈q, x, r〉
is a transition in the input FSA, the annotated symbol xq r is replaced by

the terminal x. Otherwise, the rule can be deleted since it is not compatible

with the FSA.

Observe that there are |Q|r sequences of states of length r, which makes

this a very inefficient algorithm. Although inefficient, this construct makes

evident that the intersected grammar has rules that are very similar to the

original ones. They are identical in length and structure differing only in

that the nonterminals are annotated so as to memorise paths in the FSA.

Billot and Lang (1989) were possibly the first to notice the connection

of this construct with chart-parsing. In general, parsing with a CFG can be

seen as a special case of intersection, with the input sequence represented

as a “flat” (linear-chain) automaton. This insight allows to generalise vari-

ous parsing algorithms to corresponding intersection algorithms. One such

algorithm for wCFG and wFSA inspired by the CKY parsing algorithm was

introduced by Nederhof and Satta (2008b). In their procedure, nontermi-

nals are annotated in a bottom-up phase that starts from valid spans in the

wFSA, followed by a top-down pruning that discards rules that can never
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participate in a valid derivation. Additionally, when a terminal symbol x

is incorporated by a rule, by substitution of its annotated version xq r, the

weight of the associated rule is ⊗-multiplied by the weight of the correspond-

ing wFSA transition 〈q, x, r〉.

Dyer and Resnik (2010) introduced an efficient top-down algorithm for

intersecting a wCFG with a wFSA. The algorithm is a generalisation of the

Earley algorithm for parsing (Earley, 1970). The advantage of Dyer’s “Ear-

ley intersection” algorithm is that it combines top-down predictions with

bottom-up completions. The algorithm thus avoids constructing many non-

terminals that may be justified from the bottom-up perspective, but can

never be “requested” by a top-down derivation, and would need to be pruned

in a second pass.2 Figure 5.1 is a compact representation of Dyer’s Earley

intersection using a weighted deductive proof system (Pereira and Warren,

1983; Shieber et al., 1995; Goodman, 1998, 1999). This program accepts

as input an epsilon-free wCFG G = 〈Σ, V, 〈S, σ〉, 〈R, ν〉〉 and an epsilon-free

wFSA A = 〈Σ, Q, 〈I, λ〉, 〈F, ρ〉, 〈E,w〉〉.3

A deductive program progresses by combining axioms and premises under

certain conditions to prove a goal. The bracketed expressions are called items.

When they appear above the horizontal line they are called antecedents.

When they appear below the horizontal line they are called consequent. The

side expression is a condition that enables the deduction. In Earley inter-

section, items are dotted rules, where the dot represents the progress of the

intersection and is associated to a state in the automaton. For example,

the interpretation of an item such as [X → α •Y β, q, s] : u, with q and s

states in Q, X and Y nonterminals in V , and X →u αY β a rule in R, where

α, β ∈ (Σ ∪ V )∗, is that we are trying to match a nonterminal X spanning

2Our early experiments showed an important gain in intermediary storage and in overall
time by using this Earley-based technique as opposed to a CKY-based technique.

3Dyer (2010) introduces a slightly more general procedure that handles ε-rules and
ε-transitions.
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[S ′ → •X, q, q] : λ(q)⊗ σ(X)
(q ∈ I) ∧ (X ∈ S) Axioms

[S ′ → X • , q, r] (q ∈ I) ∧ (r ∈ F ) ∧ (X ∈ S) Goals

[X → α •Y β, q, r] : u

[Y → • γ, r, r] : v
Y →v γ ∈ R Predict

[X → α • zβ, q, s] : u

[X → αz • β, q, r] : u⊗ w(s, z, r)
〈s, z, r〉 ∈ E Scan

[X → α •Y β, q, s] : u [Y → γ • , s, r] : v

[X → α Ys r • β, q, r] : u
X 6= S ′ Complete

[S ′ → •X, q, q] : u [X → γ • , q, r] : v

[S ′ → Xq r • , q, r] : u⊗ ρ(r)
(r ∈ F ) ∧ (X ∈ S) Accept

Figure 5.1: Logic program to perform Earley intersection

from state q and that we have succeeded in matching the part α, spanning

from state q to state s, and we are now trying to match β spanning from

s. An item whose dot happens before the end of the rule is said to be in-

complete. A complete item is such as [Y → γ • , s, r] : v, which represents

a Y spanning from state s to state r with weight v, and Yr s (sometimes

also written Yr,s) is a shorthand for the resulting left-hand side nonterminal.

The number of items in the program is bounded by |R||Q|r, where r is the

length of the longest right-hand side in R plus one, that is, the length of the

sequence of states that indexes the longest rule in the grammar.

The axioms of the program shown in Figure 5.1 consist of all items

expecting to prove that a start symbol of the grammar can recognise paths

starting from an initial state of the automaton. To make the procedure

general enough to handle multiple start symbols, multiple initial states and

multiple final states, the axiom introduces a new start symbol S ′, which will

become the root of the intersected grammar. Hence, the goal is to prove that
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start symbols span valid paths in the automaton, that is, paths from an initial

to a final state. Prediction is an operation that creates new items from

a dotted rule whose dot precedes a nonterminal, under the condition that

this nonterminal is associated to productions in the grammar. Scan is an

operation that moves the dot forward over a terminal symbol, provided that

this symbol can be recognised in the automaton from the state represented

by the dot. Note that for deterministic automata, scanning produces a single

item per deduction. Scanning causes the incorporation, by ⊗-multiplication,

of the weights in wFSA transitions. Completion is used to merge items,

(a) one that expects a nonterminal X spanning paths from a certain state

s, and (b) another proving that X spans paths from s to some other state

r; in the resulting item the dot moves forward over the nonterminal proving

paths up to r. Finally, complete items are accepted. A complete item such

as [Y → γ • , s, r] : v produces a rule Ys r →v γ in the intersected grammar

G′ = 〈Σ, V ′, 〈{S ′}, {S ′ 7→ 1̄}〉, 〈R′, ν ′〉〉, where V ′ is the specialised set of

nonterminals, S ′ is the new start symbol, and 〈R′, ν ′〉 is the specialised set

of rules.

To illustrate how the deductive program works, consider the wCFG

q(0) = 〈 Σ = {c, d, e, f, g, h, x, y},
V = {A,B,C,D,E, F,G,H, T},
〈{T}, {T 7→ 1̄}〉,
〈R0, u〉 〉

shown in Figure 5.2, where Figure 5.2a shows the weighted set of rules 〈R0, u〉
and Figure 5.2b compactly illustrates the forest that R0 encodes (q(0) contains

6 derivations).4 Figure 5.3 shows an example refinement A(1) that lowers the

upperbound score of derivations containing bigrams starting in x. Figure

5.3a shows the wFSA used to locate the bigrams and update their scores,

4We use a compact notation which we call packed forest to group derivations identical
in structure, however yielding different strings. Alternative terminals are grouped at the
leaves using a set notation.
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1 T −→
u1

A B

2 B −→
u2

E F

3 A −→
u3

G H

4 A −→
u4

C D

5 H −→
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h

6 H −→
u5

x

7 C −→
u7

x

8 C −→
u8

c

9 E −→
u9

e

10 F −−→
u10

f

11 G −−→
u11

g

12 G −−→
u12

y

13 D −−→
u13

d

(a) Rules (R0)

T

A

G

{g, y}

H

{h, x}

B

E

e

F

f

T

A

C

{c, x}

D

d

B

E

e

F

f

(b) Forest

Figure 5.2: Example q(0) = G(x)

there, αz = w2(xz)/w1(z) refers to the scaling factor that updates the score of

the unigram z to the bigram xz (see Section 4.2.3). Figure 5.3b highlights

the bigrams {xe, xd} we would like to account for.

Figure 5.4 illustrates the intersection between q(0) (Figure 5.2) and the

automaton A(1) (Figure 5.3a) following the deductive program in Figure

5.1. The explanation relies on a graphical illustration of the items of the

deductive program. For instance, Figure 5.4a is associated with the item

[S ′ → •T, 0, 0] : λ(0) ⊗ σ(T ), where the new start symbol S ′ is omitted for

the sake of space and the weights are omitted for the sake of clarity. Sim-

ilarly, Figure 5.4b is associated with the item [T → •AB, 0, 0] and so on.

The illustration shows how the intersected grammar is built by making the

indexed nonterminals explicit within the items. Incomplete nonterminals are

denoted by Xqi • , where qi ∈ {0, 1} is the origin state and • refers to the fact

that we do not yet know the destination state of the paths spanned by X.

Such symbols fire predictions in case they have never been predicted before.
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f

(b) Interactions

Figure 5.3: Example refinement A(1)

They can also be completed, in case some Xqi qf
has been proven, causing the

dot to move forward in the item. A terminal to be scanned is denoted by

zqi • . Similarly, {z1, . . . , zn}qi • is used to compactly denote n items about to

scan their respective terminals departing from state qi.

Table 5.1 explains Figure 5.4 panel by panel. The packed forests in Fig-

ures 5.4h and 5.4j represent points were the intersection procedure “branched”

the grammar. That is, it moved from recognising terminals at the intial state

to recognising terminals at some other state which implicitly guarantees that

a certain prefix has been recognised. In this running example, at state 1 it is

certain that a prefix ending in x has been recognised. In Table 5.1, the items

involved in the intersection are explained as well as how they are combined

creating new items. A concrete implementation of the intersection procedure

does not typically run in the order shown in Table 5.1, that order was chosen

to comply with Figure 5.4.

Figure 5.5 shows the resulting grammar q(1) = q(0) ∩ A(1), its modified

set of rules R1 (5.5a) and its derivations (5.5b) where the additional top rule
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S ′ −→̄
1
T is omitted. The intersection procedure creates 6 additional rules (+)

and it also reweights existing ones (∗). Note that the wFSA weights are 1̄

except for w(1, d, 0) = αd and w(1, e, 0) = αe (Figure 5.3a).

q(1) = 〈 Σ = {c, d, e, f, g, h, x, y},
V = {A,A′, B,B′, C, C ′, D,D′, E, E ′, F,G,H,H ′, T},
〈{T}, {T 7→ 1̄}〉,
〈R1, v〉 〉

The intersected grammar contains the same six derivations of the in-

put, however, the intersection requires an extended set of nonterminals, and

additional rules to allow for derivations compatible with bigrams xz to be

weighted more realistically. One can think of the refinement operation as

a mechanism to make explicit, through the structure of the grammar, the

derivations whose yield are compatible with the strings reweighted by the

automaton, separating them from others that are not. That is basically

what the boxed forests are highlighting in Figure 5.5b.
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Figure 5.4: Intersecting the bigram 〈x • 〉 everywhere in G(x)
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Figure Item Explanation

5.4a 1 [S′ → •T, 0, 0] this item is an axiom

5.4b 2 [T → •AB, 0, 0] predicted from 1

5.4c 3 [A→ •GH, 0, 0] predicted from 2

5.4d 4 [A→ •C D, 0, 0] predicted from 2

5.4e

5 [G→ • g, 0, 0] predicted from 3
6 [G→ • y, 0, 0] predicted from 3
7 [G→ g • , 0, 0] scanned from 5 (proves G0,0)
8 [G→ y • , 0, 0] scanned from 6
9 [A→ G0,0 • H, 0, 0] completed 3 with 7
10 [H → •h, 0, 0] predicted from 9
11 [H → •x, 0, 0] predicted from 9

5.4f
12 [C → • c, 0, 0] predicted from 4
13 [C → •x, 0, 0] predicted from 4

5.4g

14 [H → h • , 0, 0] scanned from 10 (proves H0,0)
15 [A→ G0,0H0,0 • , 0, 0] completed 9 with 14 (proves A0,0)
16 [T → A0,0 •B, 0, 0] completed 2 with 15
17 [B → •E F, 0, 0] predicted from 16

5.4h

18 [H → x • , 0, 1] scanned from 11 (proves H0,1)
19 [A→ G0,0H0,1 • , 0, 1] completed 9 with 18 (proves A0,1)
20 [T → A0,1 •B, 0, 1] completed 2 with 19
21 [B → •E F, 1, 1] predicted from 20

5.4i

22 [C → c • , 0, 0] scanned from 12 (proves C0,0)
23 [A→ C0,0 •D, 0, 0] completed 4 with 22
24 [D → • d, 0, 0] predicted from 23
25 [D → d • , 0, 0] scanned from 24 (proves D0,0)

5.4j

26 [C → x • , 0, 1] scanned from 13 (proves C0,1)
27 [A→ C0,1 •D, 0, 1] completed 4 with 26
28 [D → • d, 1, 1] predicted from 27
29 [D → d • , 1, 0] scanned from 28 (proves D1,0)

5.4k

30 [E → • e, 0, 0] predicted from 17
31 [E → e • , 0, 0] scanned from 30 (proves E0,0)
32 [B → E0,0 •F, 0, 0] completed 17 with 31
33 [F → • f, 0, 0] predicted from 32
34 [F → f • , 0, 0] scanned from 33 (proves F0,0)
35 [B → E0,0 F0,0 • , 0, 0] completed 32 with 34 (proves B0,0)
36 [T → A0,0B0,0 • , 0, 0] completed 16 with 35 (goal)

5.4l

37 [E → • e, 1, 1] predicted from 21
38 [E → e • , 1, 0] scanned from 37 (proves E1,0)
39 [B → E1,0 •F, 1, 0] completed 21 with 38
40 [B → E1,0 F0,0 • , 1, 0] complete 39 with 34 (proves B1,0)
41 [T → A0,1B1,0 • , 0, 0] completed 20 with 40 (goal)

Table 5.1: Earley intersection explained
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i Item Rule i Item Rule
1 T0 0 −→

u1

A0 0 B0 0 T −→
v1

A B 7∗ C0 1 −−−−−−−−→
u7⊗w(0,x,1)

x C’ −→
v7

x

+14 T0 0 −→
u1

A0 1 B1 0 T −−→
v14

A’ B’ 8∗ C0 0 −−−−−−−−→
u8⊗w(0,c,0)

c C −→
v8

c

2 B0 0 −→
u2

E0 0 F0 0 B −→
v2

E F 9∗ E0 0 −−−−−−−−→
u9⊗w(0,e,0)

e E −→
v9

e

+15 B1 0 −→
u2

E1 0 F0 0 B’ −−→
v15

E’ F +18 E1 0 −−−−−−−−→
u9⊗w(1,e,0)

e E’ −−→
v18

e

3 A0 0 −→
u3

G0 0 H0 0 A −→
v3

G H 10∗ F0 0 −−−−−−−−→
u10⊗w(0,f,0)

f F −−→
v10

f

+16 A0 1 −→
u3

G0 0 H0 1 A’ −−→
v16

G H’ 11∗ G0 0 −−−−−−−−→
u11⊗w(0,g,0)

g G −−→
v11

g

4 A0 0 −→
u4

C0 0 D0 0 A −→
v4

C D 12∗ G0 0 −−−−−−−−→
u12⊗w(0,y,0)

y G −−→
v12

y

+17 A0 0 −→
u4

C0 1 D1 0 A −−→
v17

C’ D’ 13∗ D0 0 −−−−−−−−→
u13⊗w(0,d,0)

d D −−→
v13

d

5∗ H0 0 −−−−−−−−→
u6⊗w(0,h,0)

h H −→
v6

h +19 D1 0 −−−−−−−−→
u13⊗w(1,d,0)

d D’ −−→
v19

d

6∗ H0 1 −−−−−−−−→
u5⊗w(0,x,1)

x H’ −→
v5

x
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Figure 5.5: Intersected grammar q(1)
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5.3.1 Incremental intersection

The deductive program is a specification, its implementation may vary, but

the result is the same. It requires that all possible deductions are performed,

and that no deduction is performed twice with the same premises, which can

be done by employing some standard form of agenda. Typically in a deduc-

tive program, items are managed in an agenda without duplicates. Items are

said active if they are still to be operated upon, and passive otherwise. Ac-

tive items are generated from other active items or by combination of active

and passive items by exhaustive application of the operators of the program

(e.g. scan, prediction, completion) until no active item is left.

We introduce here a variant of Dyer’s Earley intersection that is tailored

for simple automata of the kind discussed in Section 4.2.3 (recursive automata

with few states). This variant is motivated by the fact that our refining

automata consume most strings at the initial state with no change in weight.

This means that for strings incompatible with the refining context (typically,

the majority) the intersection with an A(t) will copy the structure of the

original grammar. When computing q(t) = q(t−1) ∩ A(t), rather than letting

the standard algorithm reconstruct the part of the agenda that is directly

associated with the input grammar q(t−1), our variant anticipates those items

prior to the standard Earley intersection.

Observe that in Figure 5.5 the grammar q(1) is the result of intersecting

the grammar q(0) in Figure 5.2a with the automaton A(1) (Figure 5.3a), that

is, the automaton that reweights bigrams starting in x (denoted by xz). The

derivations compatible with xz are the boxed ones. Note that for the other

derivations the grammar looks just like the original.

The intuition is to perform a single bottom-up pass through the grammar

anticipating items that would remain from the original structure and then

proceed normally with Earley intersection. This bottom-up procedure does

not perform predictions and its axioms are restricted to intersecting rules
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[X → •α, q, q] : u
(q ∈ I) ∧ (X −→

u
∈ R) axioms

[X → α •xβ, q, s] : u

[X → αx • β, q, r] : u⊗ w(s, x, r)
〈s, x, r〉 ∈ E scan

[X → α •Y β, q, s] : u [Y → γ • , s, r] : v

[X → α Ys r • β, q, r] : u
complete

Figure 5.6: Bottom-up initialisation in incremental intersection

with only the initial state of the refining automaton.

Figure 5.6 shows the deductive program that describes this initialisation.5

This procedure speeds up Earley intersection because it produces many of the

items that Earley would produce without requiring an agenda. We simply it-

erate through the rules in the grammar in topological order of their left-hand

side symbol (remember that we are talking about acyclic grammars) firing

the operations shown in Figure 5.6. The items deduced by the program in

Figure 5.6 initialise an agenda used to perform Earley intersection as shown

in Figure 5.1. The complete items are made passive and the incomplete ones

are active in this agenda. See in Figure 5.7 how at each iteration the incre-

mental procedure performs about 3 times faster than the standard Earley

intersection.

5.3.2 Selective intersection

In our application of OS∗ to SMT, each time a sample is rejected we collect

information about n-gram contexts that are far too optimistic with respect

to the true language model. This information is used to refine the proposal

5While this program might resemble the bottom-up intersection in (Dyer, 2010), they
are actually different. Dyer’s bottom-up procedure intersects an acyclic grammar with an
acyclic automaton, there, axioms are instantiated for every state in the automaton (i.e.
∀q ∈ Q). Our procedure is used in the context of intersecting an acyclic grammar with a
recursive automaton of the kind introduced in Section 4.2.3, and it is used as initialisation
for the program in Figure 5.1.
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Figure 5.7: Incremental intersection

by incorporation of longer n-grams via intersection. However, these contexts

might be compatible with many regions of the hypergraph, that is, with

not only one, but many derivations. Simply observing the yield of rejected

derivations does not directly reveal where in the hypergraph these contexts

are likely to participate in high-scoring derivations, those likely to be sampled

(or to be optimal).

Having in mind the grammar q(0) as illustrated earlier, consider a scenario

in optimisation in which derivations in q(0) going through 〈x, d〉 are unlikely

to be amongst the highest-scoring ones despite the optimistic assessments at

the unigram level. That is, T
δ−0=⇒ xdef , where δ−0 = {1, 4, 7, 13, 2, 9, 10} ∈ R∗0

(see Figure 5.2a) scores poorly even in an optimistic assessment. In addition,

suppose that we have gathered from q(0) convincing evidence to motivate a

refinement that lowers bigrams of the kind 〈x, ·〉. For instance T
δ∗0=⇒ gxef ,

where δ∗0 = {1, 3, 11, 6, 2, 9, 10} ∈ R∗0, is the current optimum, and 〈x, e〉
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(b) Selected interactions

Figure 5.8: Example of selective refinement A(1)

realises the largest gap between q(0) and p, more specifically, between A(0)

and the true LM distribution A. At this point one can refine q(0) with A(0)

(Figure 5.3a) producing q(1) (Figure 5.5). While the refinement correctly

down-weights all derivations compatible with 〈x, ·〉, including the optimum

derivation δ∗0, it also branches the grammar as to down-weight already un-

likely derivations compatible with 〈x, d〉, such as δ−0 .

The problem arises when one deals with real world grammars, which are

considerably larger than those illustrations. Typically, there are many deriva-

tions compatible with a k-gram context α and incorporating it everywhere,

as illustrated earlier, implies specialising the grammar as to make explicit

everywhere whether or not a derivation’s yield include the context α. This

will affect all those derivations compatible with α irrespective of their pos-

sibly poor scores. Moreover, as far as we know — in optimisation mode —

only one such derivation has been justified by a reject — the current opti-

mum derivation. To proceed with the illustration, in which 〈x, d〉 is assumed

unlikely even on optimistic assessment, there would be no need to branch the
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grammar producing the item [C → x • , 0, 1] (Figure 5.4j). A lookahead at

Figure 5.11 will give a better intuition of the purpose of selectively intersect-

ing q(0). Note that fewer rules are produced and the packed forest is smaller

than in the näıve case.

Suppose a scenario in which we have made each x in q(0) a different ter-

minal, for instance, by annotating them with a sequential identifier that dis-

tinguishes different occurrences of x in the grammar. An example of that can

be seen in Figure 5.8b, where different occurrences of x are annotated with a

superscript (other terminals were left unnanotated because they only occur

once). The updated set of terminals in q(0) is Σ = {c, d, e, f, g, h, x1, x2, y}
and the optimum derivation δ∗0 now yields 〈g, x1, e, f〉. It is now possible to

design a refinement that accounts for 〈x1, ·〉 and not for 〈x2, ·〉 (see Figure

5.8a) within the same framework already introduced.

Figure 5.9 illustrates this strategy which relies on Earley intersection and

on the annotated version of the grammar. Figure 5.11 shows the resulting

grammar, which is more compact than what was obtained before (Figure

5.5). While this seems efficient in making the effect of the refinement local,

therefore avoiding an undesired combinatorial explosion in low-probability

areas of the hypergraph, it is far too specific in the sense that very little

is learnt from the rejected optimum in terms of overoptimistic n-grams. In

a realistically sized grammar, there would exist many occurrences of x and

even if most of them were located in low-probability regions, should at least

10% of them have high-probability, there would be more than just a few

occurrences, and incorporating them one by one would be time-inefficient.

To better illustrate this inefficiency, consider the comparison shown in

Figure 5.12. Curve 1 represents the intersection that incorporates any given

k-gram context everywhere — let us call this “refining n-gram types” (be-

cause terminals of a certain surface “type” are handled altogether). Curve 2

represents a selective intersection in which terminals are annotated so that
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each occurrence becomes a unique symbol. Let us call this “refining n-gram

instances” (because each terminal occurrence is treated as a different instance

of a certain terminal base type).
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Figure 5.9: Intersecting the bigram 〈x • 〉 where it is more likely in G(x)
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i Item Rule i Item Rule
1 T0 0 −→

u1

A0 0 B0 0 T −→
v1

A B 7∗ C0 0 −−−−−−−−−→
u7⊗w(0,x2,0)

x2 C −→
v7

x2

+14 T0 0 −→
u1

A0 1 B1 0 T −−→
v14

A’ B’ 8∗ C0 0 −−−−−−−−→
u8⊗w(0,c,0)

c C −→
v8

c

2 B0 0 −→
u2

E0 0 F0 0 B −→
v2

E F 9∗ E0 0 −−−−−−−−→
u9⊗w(0,e,0)

e E −→
v9

e

+15 B1 0 −→
u2

E1 0 F0 0 B’ −−→
v15

E’ F +17 E1 0 −−−−−−−−→
u9⊗w(1,e,0)

e E’ −−→
v17

e

3 A0 0 −→
u3

G0 0 H0 0 A −→
v3

G H 10∗ F0 0 −−−−−−−−→
u10⊗w(0,f,0)

f F −−→
v10

f

+16 A0 1 −→
u3

G0 0 H0 1 A’ −−→
v16

G H’ 11∗ G0 0 −−−−−−−−→
u11⊗w(0,g,0)

g G −−→
v11

g

4 A0 0 −→
u4

C0 0 D0 0 A −→
v4

C D 12∗ G0 0 −−−−−−−−→
u12⊗w(0,y,0)

y G −−→
v12

y

5∗ H0 0 −−−−−−−−→
u6⊗w(0,h,0)

h H −→
v6

h 13∗ D0 0 −−−−−−−−→
u13⊗w(0,d,0)

d D −−→
v13

d

6∗ H0 1 −−−−−−−−−→
u5⊗w(0,x1,1)

x1 H’ −→
v5

x1

Figure 5.10: Rules
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Figure 5.11: Selectively intersected grammar q(1)

Each curve in Figure 5.12 shows the time necessary to perform the inter-

section that accounts for some k-gram context in a optimisation task with

OS∗ and an upperbound on a 4-gram language model for a short input sen-

tence containing 7 words. Observe that, when refining on types (curve 1),

the true optimum is found after just about 30 iterations. This means that

less than 30 different k-gram contexts of variable order need to be accounted

for in order to obtain a solution with a certificate of optimality. Curve 1 is

steep, showing that the grammar grows considerably after each intersection

making the next intersection slower. On the other hand, when refining on

instances (curve 2), faster intersections are observed. This happens because

at each iteration only a very specific instance of a certain k-gram context
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is incorporated — the instance that participates in the rejected optimum

— therefore, only derivations compatible with that given instance will be

specialised. While this extreme form of selective intersection enables a fine

control over the growth of the grammar, there is very little generalisation

from the rejected optimum and not many derivations have their upperbound

scores lowered. Ultimately, such conservative refinements lead to many more

iterations before optimality can be proven (about 140 iterations in the ex-

ample).

To add to the illustration, consider the terminal type the. The initial

proposal associated to Figure 5.12 contained 108 instances of the. Intersecting

those instances näıvely branches the grammar for all the potentially 108 rules

involving the. Intersecting those instances carefully, one by one as they show

up in rejected derivations, requires accounting for only 16 of them. For all

1-word contexts that are incorporated before reaching the true optimum in

that illustration, refining on types incorporates 62% of all terminal instances

of the initial hypergraph, while refining on instances only touches 7% of them.

Finally, it is important to stress that the same n-gram types are incorporated

by both strategies, however, in the more conservative case (curve 2), fewer

instances of those types are refined.

While this observation reveals more about the nuances of the problem,

it does not offer a concrete solution. The total decoding time, given by

the “area” below the curves (or sum of the bars) in Figure 5.12, is still

much higher in the selective case. Now consider the strategy we have just

introduced, which incorporates n-grams “instance-by-instance”, in sampling

mode. At each iteration, sampling can offer a much more insightful view

of the distribution by simply drawing a “large” batch of samples (say a

few hundreds) from the proposal, instead of a single derivation such as it

happens in optimisation. In this batch of samples one will typically find

many occurrences of a certain terminal type, but only a few instances will be
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Figure 5.12: Refining n-gram types vs. refining n-gram instances

responsible for most of the evidence supporting a refinement on that type.

In the illustration we have just presented, we are likely to identify most of

the 16 “popular” (or high-scoring) instances of the terminal type the in the

first round of sampling.

This motivating argument reveals the goal, as well as the nature, of what

we call selective intersection. Selective intersection aims at incorporating

context in high-probability regions of the hypergraph, and it is connected

to how much probability mass the grammar allocates to strings under dif-

ferent subderivations. This intuitive formulation can be formalised in terms

of marginal edge probabilities, that is, the total probability of sampling a

certain edge out of the hypergraph. Rephrasing it further to make it clearer,

the chance of a rule participating in a derivation sampled at random from the

distribution. Formally this notion of “edge marginal”, or “rule marginal”,

changes depending on the choice of semiring. While in a sum-times semir-
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ing it represents the sum of the probabilities of all derivations that utilises

the given rule, in a max-times semiring it represents the score of the best

derivation that utilises the rule.

5.3.2.1 Strategies of selective intersection

Let us formalise a more general strategy for selective intersection. Given a

grammar q(t) = 〈Σ, V, 〈S, σ〉, 〈R, ν〉〉, let us start by recollecting from Section

3.1.1 the functions: I : V → K, which takes a nonterminal (also called

“node”) in V and returns its inside weight ; O : V → K, which takes a

nonterminal and returns its outside weight ; and M : R → K, which takes a

rule in R and returns its marginal weight. By abuse of language let us also

write M[z], for z ∈ Σ, when referring to O[z], that is, the outside weight of

a terminal.6 Moreover, let α ∈ Σk be a k-gram context, z ∈ Σ be the last

word of the n-gram αz, and zi be a specific instances of terminal z.

At first, let us focus on bigrams αz, where α ∈ Σ is a 1-word context.

Often we will say “incorporating α” (or “refining on α”) meaning the inter-

section of the current grammar with an automaton that reweights all 1-word

continuations of α. Suppose we gather evidence to support the refinement

on a certain unigram type α = x such that no instance of this type has

been incorporate before. We can use the current grammar to split the set

of instances of x into two sets. The first set is made of the high-scoring in-

stances of x, lets call it Hx for high. The second set is made of the remaining

(lower-scoring) instances of x, let us call it Lx for low. Let us assume that

by high-scoring we mean the top-scoring instances that represent a minimum

portion of the total mass assigned to the type (say 10% of the mass). This

split can be performed by sorting instances of x according to a normalised

view of M[x], denoted by M̄[x], and selecting instances xi in descending or-

6Note that to every terminal z one can associate a single pre-terminal rule r such that
〈z〉 −→̄

1
z, where 〈z〉 represents a unique nonterminal made up from z, and the marginal

weight of r, M[r] = O[z]⊗ I[z] = O[z]⊗ 1̄ = O[z], is equal to the outside weight of z.
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der of M[xi], such that the total mass in Hx exceeds a threshold. That is,

by selecting Hx such that
∑

xi∈Hx M̄[xi] ≥ th, where normalisation happens

with respect to the total mass assigned to the type, i.e. M̄[xi] = M[xi]∑
j M[xj ]

. Re-

finements are then dynamically designed to specialise the proposal only with

respect to the instances in Hx, leaving the instances in Lx at a lower-order

representation.

Following the discussion in Section 4.2.4, the coarse-to-fine search per-

formed by OS∗ requires keeping track of what k-gram contexts have already

been incorporated to the implicit upperbound LM distribution At0. In the

case where instances are dealt with in groups, this bookkeeping might be-

come non-trivial. Suppose at some point we refine the high-scoring instances

of a terminal type x, say Hx = {x1, x2, x3} and Lx = {x4, . . . , xm}. Nothing

prevents OS∗ from requiring the incorporation of some xl ∈ Lx at some later

point, after all, selective intersection is not synonym of pruning, but rather

a way of anticipating computations that are likely to happen anyway and

delaying computations of which we are unsure will happen. This instance

xl may represent some important computation that was overlooked the first

time the split Hx and Lx was estimated, either because the threshold was not

inclusive enough or because the instance was not likely at such an early stage

of the search, redeeming itself later on (what could never happen if the in-

stance had fallen off a beam in cube-pruning). For these redeemed instances,

such as xl, we opt to resort to the simpler and more conservative strategy of

incorporating the specific instance solely.7 In terms of bookkeeping, the set

of high-scoring instances of x is updated Hx ← Hx ∪ {xl}.

Let us now turn to higher order contexts, starting with αz, where α = yx

is a bigram. Consider Iy ⊆ (Hy ∪ Ly) and Ix ⊆ Hx, where the instances

Hx have already been incorporated as 1-word contexts. Assume the instance

7Note that we could incorporate additional instances, not yet in Hx, in one go, but it
turns out it is efficient enough to treat the remaining instances as exceptions to the rule
and incorporate them one by one as they redeem themselves from Lx.
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ykxh a 2-word context to be incorporated, where (yk, xh) ∈ Iy × Ix. Let

us also define the set of high-probability instances of the type yx as Hyx =

{〈yj, xi〉 : yj ∈ Iy ∧ xi ∈ Ix} ⊆ Hy × Hx and ykxh ∈ Hyx. On one extreme,

when Iy = {yk} and Ix = {xh}, we could incorporate ykxh alone, and leave

other instances of yx to some later point when they are proven necessary. On

the other extreme, when Iy = (Hy∪Ly) and Ix = Hx, we could incorporate all

extensions (by any instance of y) of instances in Hx.
8 However, when y and

x interact, a smaller subset of (Hy∪Ly)×Hx typically represents most of the

mass associated to yx.9 A compromise solution is to select Iy ⊆ (Hy∪Ly) and

Ix ⊆ Hx, so that Hyx holds at least a minimum portion of the total mass in

Hy×Hx. For instance, Figure 5.13 illustrates how one can choose the subset

of Iy and Ix. Suppose each cell contains the product M(yj
th

) ⊗ M(xi
th

)

normalised with respect to all (yj, xi) pairs in (Hy ∪Ly)×Hx. Moreover, y’s

and x’s are sorted in descending order. In the figure, darker cells represent

more probability mass, and the four cells at the top-left corner hold more

than 40% of the total mass. When at a later point another bigram context

〈yj, xi〉 6∈ Hyx, and xi ∈ Hx, needs to be accounted for, we proceed by simply

adding that specific instance.

For context α ∈ Σk, where k > 2, everything is the same. If no instance

of α has ever been incorporated, we proceed by choosing the set Hα as before.

Otherwise, we incorporate the specific instance solely. As the length of the

context increases, a computation of the kind shown in Figure 5.13 becomes

expensive due to normalisation. A different criterion is to make use of a

parameter β that restricts how far from the best interaction one can be. This

parameter works like a beam, but rather than establishing a limit beyond

which interactions get pruned, it establishes how much computation will be

8Note that choosing Hyx = (Hy ∪Ly)× (Hx∪Lx) would not make sense, since that set
includes instances yjxi, where xi ∈ Lx, which have not yet been incorporated at a lower
level.

9Typically one can limit Iy to a subset ofHy and still anticipate most of the computation
that would be required to lower the upperbound sufficiently.
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Hy ∪ Ly
Hx

x1st x2nd . . . xn
th

y1st

y2nd

. . .

ym
th

Figure 5.13: Interaction between instances in a bigram

anticipated, leaving the remaining to some later time when explicit evidence

becomes available.

5.3.2.2 Estimating edge marginals with sampling

Finally, in terms of time-efficiency, computing M[z] at each iteration requires

running the Inside-Outside algorithm (Section 3.1.1), which is O(|G|2). Al-

ternatively, M[z] can be kept from iteration to iteration and only recomputed

when eventually an k-gram instance of a k-gram type never refined before

falls in the low-probability set. This might still prove inefficient, thus sam-

pling can also be used to quickly obtain a summary of the distribution, from

which M[z] can be quickly estimated. Moreover this estimation is unbiased

given that samples are drawn independently from the proposal.

5.3.2.3 Bookkeeping

Bookkeeping now is performed with respect to two dimensions, the types and

the instances. A trie T = 〈Σ, Q, I = {q0}, F = Q,E〉 is used to bookkeep

k-grams over the vocabulary Σ of terminal types. Just like it was discussed

in Section 4.2.4, there is a one-to-one correspondence between each state in

the trie and a k-gram context α ∈ Σk. The difference now is that to which

state q ∈ Q, in addition to the function {z 7→ wk(αz)}, with z ∈ Σ, we

also associate a non-deterministic automaton Iα = 〈Σ′α ⊆ Σ′, Q′, I ′, F ′, E ′〉
that compactly encodes the subset of instances of α that have already been

incorporated. The set Σ′ is that of all terminal instances in the proposal
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Figure 5.14: Bookkeeping in selective intersection

hypergraph, and Σ′α is a subset of Σ′ made of instances of the types par-

ticipating in the context α only. Choosing Iα to be non-deterministic is a

convenience that makes it simpler to maintain the information it encodes.

To illustrate how this structure is maintained, suppose an initial proposal

q(0)(d) = G(x)∩A(0), where A(0) incorporates w1(u[zi]) for every instance zi

based on a type z ∈ Σ.10 At this point, the trie used for bookkeeping contains

only state 0 shown in Figure 5.14a. Suppose a derivation optimised from q(0)

yields c1b1a1. The bigram candidates for refinement are c1b1 and b1a1, because

instances of cb or ba have never been accounted for. Suppose w2(ba)
w1(a)

< w2(cb)
w1(b)

,

10Note that although in q(0) terminals are instances, the upperbound weight is a function
of terminal types only, that is, the LM only cares about unannotated strings.
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that is, b1a1 realises the largest gap between q(0) and p. Therefore we proceed

by choosing Hb the set of high-scoring instances of b making sure b1 ∈ Hb.
11

Assume Hb = {b1, b2, b3, b4} is chosen, then a refinement A(1) is designed to

reweight 1-word continuations of instances in Hb, and q(1) is obtained by the

intersection q(0) ∩ A(1). The trie is updated by creation of state 1 and the

transition 〈0, b, 1〉 which memorises that the type b has been incorporated.

State 1 stores both the function {z 7→ w2(bz)}, for z ∈ Σ, and a pointer to

the automaton shown in Figure 5.14b, which memorises that only instances

in Hb have been intersected.

Consider the optimum in q(1) yields b1c1a1; the bigrams are b1c1 and c1a1,

but b1c1 is not a candidate. Note how the (reversed) prefix b1 has been

memorised by the trie. We first find the state associated to the type b in

Figure 5.14a, i.e., 1. Then, we check if the automaton associated with it

recognises b1. From Figure 5.14b, that would be the case. Thus, c1a1 is

the only candidate, and bigrams starting in instances of c have never been

accounted for. Therefore we proceed by deciding on Hc such that c1 ∈ Hc,

designing the automaton A(2), obtaining q(2) by intersection and updating

the trie. The trie now contains state 2 and a transition 〈0, c, 2〉. State 2 also

contains an automaton, shown in Figure 5.14c, to memorise which instances

of c have been selected in Hc, and the function w2(cz).

Now, suppose the optimum in q(2) yields c1b1a1 again; the next available

refinement is to account for continuations of c1b1. Note that b1 has been

memorised, and no instance of cb has ever been incorporated. Thus, we

decide on Hcb, such that c1b1 ∈ Hcb, designs the automaton A(3), obtains

the proposal q(3) by intersection, and updates the trie. The trie is updated

with state 3, which is associated to the type cb, and the transition 〈1, c, 3〉.
State 3 stores w3(cbz) and the automaton shown in Figure 5.14d, which

11Typically bi ∈ Hb, if this is not the case in some odd scenario, it is easy to make sure
bi ∈ Hb by choosing Hb conveniently.
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Figure 5.15: Deterministic version of the automaton “instances of bc”

memorises the instances in Hcb. Note how the automaton efficiently encodes

the cross-product {b1, b2} × {c1, c2}.

Finally, suppose that at some later time t, the optimum in q(t) yields

c3b1a1. The prefix we are looking for is c3b1, its reverse is b1c3 and the

trie does accept the type bc, however, from Figure 5.14d we can see that

b1c3 is not accepted. Thus, we assume that c3b1 redeemed itself from Lcb

and design a refinement A(t+1) that reweights 1-word continuations of that

specific instance obtaining q(t+1) by intersection. In this case, the automaton

in Figure 5.14d is updated to the one shown in Figure 5.14e. Note that

state 3 is added so that b1c3 is accepted, but b2c3 is not. Here the non-

determinism of this automaton makes it easy to memorise different instances

of cb that share some, but not all, suffixes. That is, Hb ⊃ Hb ∩ Ib 6= ∅, for

Ib = {bi : ∃(·, bi) ∈ Hcb}.

5.4 Conditioning context

It is sometimes useful to know the set of context histories that may precede

a certain word. For instance, we can use this information about conditioning

contexts to tighten the upperbound on the language model distribution. In

Section 4.2.2.2, we discussed how a 1-word conditioning context can be used

to perform such tightening. In fact, longer histories could be used for this

purpose. However, the algorithm we will discuss for finding the set of ac-

tive n-grams compatible with a given grammar runs in time proportional to
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[S ′ → •X, 〈BOS1, . . . , BOSk〉 ? 〈BOS1, . . . , BOSk〉]
X ∈ S Axioms

[S ′ → X • ,y1 ? y2] X ∈ S Goals

[X → α •Y β,y1 ? y2]

[Y → • γ,y2 ? y2]
Y → γ ∈ R Predict

[X → α • zβ,y1 ? y2]

[X → αz • β,y1 ? 〈y2z〉k]
Scan

[X → α •Y β,y1 ? y2] [Y → γ • ,y2 ? y3]

[X → αY • β,y1 ? y3]
X 6= S ′ Complete

[S ′ → •X,y1 ? y2] [X → γ • ,y2 ? y3]

[S ′ → X • ,y1 ? 〈y3 EOS〉k]
X ∈ S Accept

Figure 5.16: Logic program that enumerates the n-grams in G(x).

|Σ|2(n−1), where Σ is the vocabulary of terminals in the grammar. Moreover,

|Σ| is typically proportional to the length I of the input sentence.

The program in Figure 5.16 enumerates the n-grams in G(x). Its input

is a grammar G(x) = 〈Σ, V, 〈S, σ〉, 〈R, ν〉〉 and the parameter k = n − 1.

An item of the program has the form [X → α • β,y1 ? y2]. The first part

X → α • β is a dotted rule. It means that we are trying to match under X a

span αβ, where α ∈ (V ∪Σ)∗ has already been recognised and β ∈ (V ∪Σ)∗

is yet to be recognised. The second part y1 ? y2 is a pair of terminal strings,

each of which contains exactly k = n − 1 words. The string y1 (or history)

represents the k words that precede the rule’s span αβ. The string y2 (or

suffix ) represents the k words that precede the dot. The star (?) simply

illustrates the fact that part of the string from the first word in y1 to the

last word in y2 might have been elided. An item is complete if its dot has

reached the end of the rule, otherwise the item is incomplete. Finally, the

operator 〈yz〉k concatenates the string y with the terminal z and returns the
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Item Fire 3-gram
[G→ •HE, ab ? ab] Predict

[H → •CD, ab ? ab] Predict
[C → • c, ab ? ab] Scan abc
[C → c • , ab ? bc] Complete

[H → C •D, ab ? bc] Predict
[D → • d, bc ? bc] Scan bcd
[D → d • , bc ? cd] Complete

[H → CD • , ab ? cd] Complete
[G→ H •E, ab ? cd] Predict

[E → • e, cd ? cd] Scan cde
[E → e • , cd ? de] Complete

[G→ HE • , ab ? de] Complete

Figure 5.17: Role of history and suffix in enumerating 3-grams

k last words in the resulting sequence.

The program starts (Axioms) by initialising dotted rules of the kind

S ′ → •X where S ′ is an artificial root symbol (not in V ) and X ∈ S is a start

symbol ofG(x). These items are prefixed by a sequence of k begin-of-sentence

symbols. Note that at this point the dot is before the beginning of the rule’s

right-hand side, therefore, the history and the suffix are the same. The

Goal of the program is to prove complete items rooted by a start symbol.

In Predict, new items are created by matching rules whose left-hand side

is the nonterminal Y after the dot. Observe that the consequent inherits

the string y2 since that is the one that precedes the dot in the antecedent.

Again, because the dot precedes the beginning of the rule’s right-hand side,

the history and the suffix are identical in the consequent. In Scan, the dot

is moved forward over a terminal. In the consequent the suffix is updated

to incorporate the terminal just scanned. Observe that scanning does not

change the history y1 of the item. Complete combines two items: the first

is an incomplete item whose dot precedes a nonterminal Y ; the second is a

complete item whose left-hand side is also Y and whose history y2 matches

the first item’s suffix. In relation to the first item, the deduction moves its

dot forward over Y , it retains the original history y1 and it updates the
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suffix to y3. Finally, in Accept, we introduce the end-of-sentence symbol

producing a goal item.

Figure 5.17 illustrates how 3-grams are enumerated using the program.

Let us focus on the subderivation rooted at G. The bigram ab precedes

the span covered by G in the yield of the derivation shown. The item that

holds this information is denoted by [G→ •HE, ab ? ab]. Note that because

the dot is at the beginning of the rule, the history and the suffix are the

same. We proceed firing operations aiming at moving the dot forward and

producing complete items. As the dot progresses within a rule, the history is

preserved and the suffix is updated. When we perform prediction the history

is updated. The figure also illustrates how Scan enumerates 3-grams. It has

access to a bigram suffix which precedes the dot and the terminal just after

the dot.

The program is very similar to Earley intersection. In fact, except for the

weights, it is implicitly equivalent to intersecting the translation grammar

with an automaton that represents the complete n-gram language model.12

Observe that, each time a terminal is scanned, the program has access to a k-

word-long conditioning context and the terminal that succeeds it. Therefore,

we can easily design Scan to memorise the set of n-grams compatible with

G(x). Following the notation in Figure 5.16, 〈y2z〉 in Scan is one such n-

gram. The number of items in the program is bounded by r|R||Σ|2(n−1), where

r is the length of the longest right-hand side plus one (i.e., the maximum

number of positions for the dot), |R| is the size of the set of rules and |Σ| is

the size of the vocabulary of terminals in G(x). Because we need to track

two strings of k = n − 1 terminals each, the complexity is proportional to

|Σ|2(n−1). This program is prohibitively slow for n > 2, and even for n = 2

12It is straightforward to incorporate the grammar and the LM weights. Axioms are
weighted by 1̄; Predict weights the consequent by the rule weight; Scan weights the con-
sequent by the ⊗-product between the weight of the antecedent and plm(z|y2); Complete
weights the consequent by the weight of the first antecedent; and Accept incorporates
plm(EOS|y3).
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(bigrams) it is only convenient for very short sentences.

Enumerating the n-grams that might participate in the yield of deriva-

tions in G(x) is just as computationally expensive as performing a full in-

tersection. Therefore, for the purpose of tightening LM upperbounds, we

enumerate only the bigrams in G(x). To perform this computation quickly,

we relax the program in Figure 5.16 with respect to the string that represents

the history of the item. Observe in Figure 5.16 that the history constrains

item combination in Complete. Without such constraint, we might cre-

ate items that do not really participate in any derivation. Therefore some

bigrams that are not strictly compatible with G(x) will be memorised by

Scan. Except for the axioms of the program, the history is always set by

the Predict rule. Since we are disregarding the history, there is no need

to perform prediction and we can proceed with a bottom-up program that

visits the nodes in topological order without the need to manage a complex

agenda of items.

The program in Figure 5.18 illustrates a fast procedure to enumerate

this superset of the set of bigrams in G(x). The axioms of the program

iterate over the set of rules of the grammar creating two types of items.

Items of the form [X, l, r] summarise a rule in the grammar, where X is

the left-hand side nonterminal, l ∈ (V ∪ Σ) is the first symbol of the rule’s

right-hand side, and r ∈ (V ∪ Σ) is the last symbol of the rule’s right-

hand side. Note that l and r are the same if the right-hand side has a

single symbol. Items of the form 〈l, r〉 ∈ (V ∪ Σ)2 represent bigrams of

terminal and nonterminal symbols. These items represent all sequences of

two adjacent symbols in the right-hand side of the rules of the grammar. The

Goal of the program is to prove pairs of terminal symbols. The Inference

rules expand items of the kind 〈l, r〉 where at least one of the symbols is a

nonterminal. These rules can be exhaustively applied in a single pass over the

nonterminal vocabulary in topological order. Expanding items take up to |V |
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Axioms

[X,α1, αn]
X → α1 . . . αn

〈αi, αi+1〉
X → α1 . . . αn ∧ n > 1 ∧ i ∈ [1, n− 1]

Goals
〈z1, z2〉 ∈ Σ2

Inference rules
〈X, r〉 [X, lx, rx]

〈rx, r〉
X ∈ V

〈l, X〉 [X, lx, rx]

〈l, lx〉
X ∈ V

Figure 5.18: Logic program that enumerates a tight superset of the set of
bigrams in G(x).

deductions for each nonterminal. Therefore the program in Figure 5.18 runs

in time O(|V |2). Producing this tight superset of the set of bigrams in G(x)

is reasonably fast and allows us to further tighten the initial upperbound on

the LM distribution.

5.5 Experiments

For the experiments reported in this section we used the German-English

portion of the 6th version of the Europarl collection (Koehn, 2005). In all

experiments, we used the Moses toolkit (Koehn et al., 2007) to extract a

wSCFG following Chiang (2005).13 Language models were trained by lmplz

(Heafield et al., 2013) using the English monolingual data made available by

the WMT (Callison-Burch et al., 2012). That is, Europarl, newscommen-

13We extracted grammars containing at most two nonterminals on the right-hand side
and at most 10 target productions for a given source production.
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Figure 5.19: Number of rules in G(x) as a function of sentence length

taries, news-2012 and commoncrawl. The models extracted from different

monolingual corpora were combined via interpolation using newstest2010 as

the development set. In all experiments, parameter estimation was performed

via MERT on the newstest2010 development set using single reference BLEU

as the oracle. Finally, from the newstest2011 test set, we selected sentences

randomly according to their length. We sampled 20 examples for each class

of length from 1 to 30 words.

Let us start by inspecting some properties of the initial grammar G(x) =

(X ◦ G) ↓. Figure 5.19 shows the average number of rules in the initial

grammar as a function of the sentence length. Observe how the growth

appears to be cubic, which is a consequence of having up to two nonterminals

on the right-hand side of a rule. Figure 5.20 shows the average length of the

longest rule (in terms of its right-hand side) in the grammar as a function of

the sentence length. We see that even short sentences tend to include long

rules. However, recall that the maximum length of a rule is bounded by a
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Figure 5.20: Longest rule in G(x) as a function of sentence length

constant due to the grammar extraction procedure (Chiang, 2005). In the

context of intersecting a grammar with an automaton, the quantity r, which

is defined as the length of the longest rule plus one, represents the longest

sequence of wFSA states that annotate a rule in the grammar.

Figure 5.21 shows the average number of target words (terminals) as a

function of the sentence length. The terminals ofG(x) make the active vocab-

ulary of target words. That is, the initial automaton A(0), which represents

an optimistic unigram version of the full LM, contains a single state and a

looping transition for each word/terminal/unigram in that set. Sometimes

we refer to the set of terminals as the set of unigrams that are compatible

with G(x), meaning the set of target words that can participate in deriva-

tions from G(x). Note how its growth is close to linear, which is due to the

fact that the number of synchronous rules per source segment is bounded.

Figure 5.22 shows the average number of unique bigrams in G(x). The

starred line is the size of the set of bigrams in G(x) computed with the fast
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Figure 5.21: Target unigrams in G(x) as a function of sentence length
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Figure 5.22: Target bigrams compatible with G(x)

132



CHAPTER 5. HIERARCHICAL PHRASE-BASED TRANSLATION
WITH OS∗

101

Input length (log)

102

103

104

105
Si

ze
 (l

og
)

|U|
|U|2

|B|
|G(x)|

Figure 5.23: Size of the target vocabulary and of the set of rules in G(x)

procedure shown in Figure 5.18 (see Section 5.4) and denoted by |B|. The

number of bigrams |B| is bounded by |U |2, which is shown in the figure as

a dotted line. The grammar encodes a limited number of reordering opera-

tors, restricting the actual number of bigrams to a fraction of the theoretical

bound.

Figure 5.23 shows some properties of the initial grammar G(x) as a func-

tion of the input length. Both axes are shown in log scale so that we can

more easily compare the curves in terms of their polynomial growth. The

curve marked with triangles represents the number of unigrams in G(x).

The dashed curve marked with black circles represents the number of rules

in G(x). The dotted curve marked with red circles (the top-most curve) is

the upperbound on the number of bigrams in G(x), that is, the squared of

|U |. Finally, the starred line represents |B|. In this figure we can see more

clearly how the number of rules grows with the input length faster than the

number of unigrams or bigrams do.
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Figure 5.24: Time spent on building the initial proposal

Finally, before we focus on the refinement operations in different modes

of OS∗, Figure 5.24 shows the average time necessary to build the initial

proposal. The dashed curve represents the time necessary to construct the

translation hypergraph, that is, to obtain G(x) = (X ◦ G) ↓. The dotted

curve shows the time to perform the initial intersection which incorporates

the unigram upperbound weights, that is, q(0) = G(x)∩A(0). Recall that the

automaton A(0) is the simplest of our refinements. It contains a single state

which is both initial and final and reweights the grammar without changing

its size. Therefore, the dotted curve in Figure 5.24 can be thought of as a

lowerbound on the time to be spent on each and every refinement after A(0).

Recall that the intersection procedure runs in time proportional to |R|, the

number of rules in the grammar, which is cubic with the length of the input

(see Figure 5.19).
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Figure 5.25: Incremental Earley intersection in optimisation

5.5.1 Optimisation

We start by discussing some results with a bigram language model and then

experiment with language model distributions of increasing order. Let us first

compare our incremental Earley intersection (see Section 4.2.3) to the original

procedure by Dyer (2010). Figure 5.25 shows the average time necessary for

convergence to the true optimum in optimisation with a bigram language

model. The dashed curve marked with circles represents OS∗ running with

the standard Earley intersection algorithm. The dotted curve marked with

stars represents OS∗ running with our incremental variant. We observe a

consistent gain in performance. However, this gain does not seem to change

the order of the complexity of the algorithm, it rather scales it down by a

constant.

In Figures 5.26, 5.27 and 5.28 we show the average number of refinements

(or iterations), the time necessary for convergence to the true optimum, and

the growth of the grammar (measured as a ratio between the size of the final
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Figure 5.26: Number of refinements in optimisation with a 2-gram LM
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Figure 5.27: Time before convergence in optimisation with a 2-gram LM

136



CHAPTER 5. HIERARCHICAL PHRASE-BASED TRANSLATION
WITH OS∗

2 4 6 8 10 12
Input length

0

100

200

300

400

500

600

R
f

R
0

Optimisation with a 2-gram LM

Corpus
Unigrams in G(x)

Bigrams in G(x)

Figure 5.28: Grammar growth in optimisation with a 2-gram LM

rule set and the initial one), respectively. All figures represent optimisation

with a bigram LM distribution. Moreover, the incremental variant of the

intersection procedure was used. We compare three different scenarios. The

dashed curves marked with circles (Corpus) represent OS∗ running with a

corpus-level upperbound (see Section 4.2.2). The other curves represent OS∗

running with tighter upperbounds produced on a sentence basis. Recall from

Section 4.2.2.2 that the upperbound distribution can be tightened with re-

spect to unigrams (curves marked with triangles) and with respect to bigrams

in G(x) (curves marked with stars). As discussed before (see Section 4.3),

there is a large gain in tightening the upperbounds to the active vocabulary of

unigrams. A much smaller gain can be achieved using the active vocabulary

of bigrams. Figure 5.28 stresses the fact that tightening the LM upperbound

distribution leads to OS∗ exploring a smaller space before convergence. Note

how the final grammars are much smaller with tighter upperbounds.

Figure 5.26 shows that we incorporate just a fraction of all bigrams in the
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grammar. Consider the sentences with 10 words. Their grammars contain

on average 150 unigrams (see Figure 5.21) and 5000 bigrams (see Figure

5.22). In these cases, to obtain an optimum derivation with a certificate of

optimality, OS∗ incorporates on average less than 20 unigram contexts (out

of the 150 available). We will see that for higher-order LMs, the fraction of

the complete space of n-grams explicitly incorporated by refinements is even

smaller. While the number of refinement operations is encouragingly small,

the decoding time is an issue. Each refinement requires a general intersection

procedure which is at least proportional to the size of the current grammar

|R|. Although this factor is alleviated by our incremental intersection, the

decoding time still grows quickly.

We now turn the discussion to optimisation with language model distri-

butions of increasing order. Figure 5.29 shows the average number of refine-

ments and the average time necessary for convergence to the true optimum.

The current implementation faces timeouts depending on the length of the

input sentence and the order of the language model, explaining why certain

curves are interrupted earlier than others in Figure 5.29. At this point we are

not relying on selective intersection, therefore, each time a k-gram context is

incorporated, it is incorporated everywhere in the hypergraph.

The number of refinements up to convergence appears to be linear with

the input length (see Figure 5.29a), while the total duration grows much

faster (see Figure 5.29b). Remember that at each iteration we perform the in-

tersection between the current proposal (a wCFG) and a refinement (a small

recursive wFSA). This intersection runs in time proportional to |R||Q|r,
where |R| is the size of the rule set of the grammar (initially proportional

to I3), r is the length of the longest rule plus one, and |Q| is the number

of states in the refinement (typically small and proportional to the order of

the refinement). OS∗ seems very economic in that only n-grams that are

proven necessary are explicitly intersected with the grammar. Observe how
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Figure 5.29: OS∗ in optimisation mode: number of refinements and time for
convergence to true optimum. Each curve represents optimisation with LM
distributions of different order: (2) uses an upperbound on a 2-gram LM;
(3) uses an upperbound on a 3-gram LM; and (4) uses an upperbound on a
4-gram LM.

we need very few iterations to converge to the optimum. However, successive

refinement operations turn out to become costly as the algorithm progresses

and the grammar grows. One of the reasons is associated with the fact that

the grammar is refined everywhere, an observation that motivates the idea

of selective intersection. Another reason relates to the fact that regardless

of how local the refinements are, the general intersection procedure is still

proportional to |R|, which in turn is proportional to I3 (see Figures 5.19

and 5.23). This observation motivates the idea of performing incremental

intersections.

Table 5.2 shows some important quantities regarding optimisation with

OS∗ using a 4-gram LM. The first column shows how many sentences we are

considering, the second column shows the sentence length, the third column

m is the average number of refinements up to convergence. Column |A(t)|
refers to the refinement type, which is the number of states in the automaton
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S Length m |A(t)| count
|Rf |
|R0|

9 4 45.0 2 20.3 74.6 ± 53.9
3 19.2
4 5.4

10 5 62.3 2 21.9 145.4 ± 162.6
3 32.9
4 7.5

9 6 102.8 2 34.7 535.8 ± 480.0
3 54.9
4 13.2

Table 5.2: Optimisation with a 4-gram LM.

A(t), that is, the order of the n-grams being re-weighted (e.g. |A(t)| = 2 when

refining bigrams sharing a one-word context). Column count refers to the

average number of refinements that are due to each refinement type. Finally,

the last column compares the number of rules in the final proposal to that

of the initial one.

Let us start by focusing on how much context OS∗ needs to take into

account for finding the optimum derivation. Table 5.2 (column m) shows that

OS∗ explores a very reduced space of n-gram contexts up to convergence. To

illustrate that, consider the last row in Table 5.2 (sentences with 6 words).

On average, convergence requires incorporating only about 103 contexts of

variable order, of which 55 are bigram (2-word) contexts (remember that

|A(t)| = 3 when accounting for a 2-word context). On average, in sentences

with 6 words, about 2,000 bigrams are compatible with strings generated by

G(x). This means that only 2.75% of these bigrams (55 out of 2,000) need to

be explicitly accounted for. This illustrates how wasteful a full intersection

would be.

A problem, however, is that the time until convergence grows quickly with

the length of the input (Figure 5.29b). This can be explained as follows. At

each iteration the grammar is refined to account for n-grams sharing a context

of (n− 1) words. That operation typically results in a larger grammar: most
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Figure 5.30: Impact of selective intersection on time for convergence in opti-
misation with a 2-gram LM

rules are preserved, some rules are deleted, but more importantly, some rules

are added to account for the portion of the current grammar that involves

the selected n-grams. Enlarging the grammar at each iteration means that

successive refinements become incrementally slower.

The histogram of refinement types, shown in Table 5.2, highlights how

efficient OS∗ is with respect to the space of n-grams it needs to explore

before convergence. The problem is clearly not the number of refinements,

but rather the relation between the growth of the grammar and the successive

intersections.

Before we turn to sampling, let us discuss some results concerning selec-

tive intersection. At this point we experiment with a 2-gram language model.

The dashed curves marked with crosses in Figures 5.30 and 5.31 show how

decoding time and grammar growth are reduced by running OS∗ with selec-

tive intersection. In this experiment, the algorithm anticipates computation

for the instances that hold h = 20% of the probability mass associated with
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Figure 5.31: Impact of selective intersection on the growth of the grammar
in optimisation with a 2-gram LM

a certain refinement type. Marginals are estimated using the Inside-Outside

algorithm and recomputed whenever an instance of a previously incorporated

type redeems itself from the group of low probability instances (see Section

5.3.2). We observe a consistent improvement in decoding time and grammar

growth. Performance varies with the parameter h. Larger h reduces the

number of iterations before convergence at the cost of growing the grammar

quickly. A procedure for the tuning of this parameter is reserved for future

work.

5.5.2 Sampling

Let us turn to results in sampling mode with language model distributions of

increasing order. Figure 5.32 shows the average number of refinements and

the average time necessary for convergence to different levels of acceptance

rate. Figure 5.32a shows that sampling is more economic than optimisation
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S Input m |A(t)| count
|Rf |
|R0|

10 5 1.0 2 1.0 1.9 ± 1.0

10 6 6.6 2 6.3 17.6 ± 13.6
3 0.3

10 7 14.5 2 12.9 93.8 ± 68.9
3 1.5
4 0.1

Table 5.3: Sampling with a 4-gram LM and reaching a 5% acceptance rate.

in that it explicitly incorporates even fewer contexts. Note how OS∗ con-

verges to acceptance rates from 1% to 10% in much fewer iterations than the

necessary to find an optimum.14 Although the convergence in sampling takes

fewer iterations than in optimisation, the total time necessary to converge to

the desired acceptance rate is still an issue (Figure 5.32b).

Table 5.3 shows the same quantities as Table 5.2, but now for sampling. It

is worth highlighting that even though we are using an upperbound over a 4-

gram LM (and aiming at a 5% acceptance rate), very few contexts are selected

for refinement, most of them lower-order ones (see rows with |A(t)| = 2). This

suggests that it is possible to design a sampler for a distribution of order n

without actually incorporating n-grams. Once we improve the performance

of the refinement operations, a direction for future work is to investigate

the use of a sampler designed for a distribution p1 to sample in a rejection

sampling framework from a more complex distribution p2. One application

of this idea is to design a sampler for a 2-gram LM distribution and sample

from a model which incorporates a 4-gram LM component. Another appli-

cation is to add to the parameterisation some global feature which requires

a complete derivation to be assessed. We can design a sampler for a simpler

14Currently we use MERT to train the model’s weight vector, which is normalised by
its L1 norm in the Moses implementation. While optimisation is not sensitive to the scale
of the weights, in sampling the scale determines how flat or peaked the distribution is.
(Arun et al., 2010) experiment with scaling MERT-trained weights as to maximise BLEU
on held-out data, as well as with MBR training. A more adequate training algorithm
along similar lines is reserved for future work.
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parameterisation which overlooks such a feature achieving a certain accep-

tance rate with OS∗. We then use the resulting sampler to perform rejection

sampling in relation to the more complex distribution at the cost of some

decrease in the acceptance rate.

Observe that an improved acceptance rate always leads to faster acquisi-

tion of exact samples after we stop refining our proxy distribution. However,

Figure 5.32b shows for example that moving from 5% to 10% acceptance rate

using a 4-gram LM (curves X and Y) is time-consuming. Thus, there is a

trade-off between how much time we spend improving the acceptance rate

and how many exact samples we intend do draw. Figure 5.33 shows the av-

erage time to draw batches between one and one million samples from exact

samplers that were refined up to 5% and 10% acceptance rate, respectively.

The samplers at 5% AR (which are faster to obtain) turn out to be more

efficient if we aim at producing less than 10 thousand samples.

Finally, note that samples are independently drawn from the final pro-

posal, making the approach an appealing candidate to parallelism in order

to increase the effective acceptance rate. That is, if we independently sam-

ple from N copies of an exact sampler with acceptance rate a we effectively

multiply the acceptance rate by N .
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Figure 5.32: OS∗ in sampling mode: number of refinements and time for
convergence to different acceptance rates: (a, b and c) use a 2-gram LM to
reach 1, 5 and 10% AR; (1-4) use a 3-gram LM to reach 2, 3, 5 and 10% AR;
and (X, Y) use a 4-gram LM to reach 5 and 10% AR.
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Chapter 6

Phrase-based translation with OS∗

In this chapter we introduce an OS∗ approach to exact inference for phrase-

based translation models such that of Koehn et al. (2003). In hierarchical

SMT (see Chapter 5) the core of the complexity issue is the intersection be-

tween the translation forest (a wCFG) and the language model (a wFSA).

In phrase-based translation, besides the expensive intersection between the

translation lattice (a wFSA) and the language model, reordering is not hard-

constrained by the model of translational equivalences. Thus, in the general

case, a translation can align to any of the input’s many permutations.1 A

key constraint in phrase-based decoding is that each input word must be

translated exactly once (we call it the non-overlapping constraint).2 Encod-

ing this constraint requires an exponential number of states, therefore, unless

some reordering limit is enforced, the translation lattice G(x) is intractable

even before the intersection with the language model.

Following the OS∗ approach to SMT introduced in Chapter 4, we design a

tractable upperbound to the goal distribution and refine this initial proposal

based on evidence gathered by rejection sampling. In order to make G(x)

tractable, we relax the space of translation derivations with respect to the

non-overlapping constraint. In a nutshell, the proposal lattice does not in-

corporate the exponentially many constraints that prevent overlaps. Instead

it incorporates a looser constraint that states that a derivation must cover

1A sentence of length I has I! =
∏I
i=1 i permutations.

2However, Roth et al. (2010) propose a model to work with overlapping phrases and
inference is based on Gibbs sampling.
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as many positions as there are words in the input. However, overlaps might

happen and some words might be translated multiple times while others are

never translated. We proceed by rejection sampling and refine the proposal

on the basis of two different types of evidence: (1) if a rejected derivation

is valid, in that each input word is translated exactly once, we refine the

proposal by incorporation of some k-gram context effectively accounting for

part of the intersection with a full language model; (2) if a rejected derivation

is invalid, in that at least one input word is translated multiple times, we

incorporate to the proposal some constraints that prevent certain overlaps

to happen.3

Another difference with respect to hierarchical models concerns the pa-

rameterisation of the model. Recall from Section 2.4.2 that phrase-based

models use a notion of distortion cost δ, which depends on the interactions

between two decisions, namely, the relative position of the current biphrase

with respect to the last source position covered by the most recently cho-

sen biphrase. In order to directly incorporate distortion costs to the initial

proposal, we start from a translation lattice whose states encode sufficient

information to compute δ upfront.

Novel contributions of this chapter are:

• a new approach for exact inference (optimisation and sampling) for

phrase-based translation models (Section 5.2);

• novel tractable upperbounds on the translation lattice.

6.1 Phrase-based SMT

In phrase-based translation the underlying model is represented by a wFST,

that is, G in G(x) = (X ◦ G) ↓ (see Section 2.5) is a wFST. The translation

3This type of relaxation is shared with methods based on ILP and Lagrangian relaxation
(see Section 3.3.2).
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hypergraph G(x) (also known as a translation lattice) is obtained by applying

G to the input sentence, in other words, by the composition between the input

x = 〈x1, . . . , xI〉, represented as the identity-transducer X , and a (cascade

of) finite-state transducer(s) G (Kumar and Byrne, 2003; Kumar et al., 2006).

Because X is acyclic and our phrase-based model does not allow unbounded

insertion (Koehn et al., 2003), the resulting lattice G(x) can be represented

by an acyclic wFSA.

In this section, weighted deduction (or weighted logic) is used to com-

pactly formalise spaces of translation derivations.4 A logic program, such as

the one shown in Figure 6.1, implicitly defines a weighted lattice such that:

(1) each state represents the signature of an item of the program; (2) each

deduction defines a transition, whose origin is the state associated with the

signature of the antecedent and the destination is the state associated with

the signature of the consequent, and whose weight is given by the weight

of the consequent; (3) the initial state is an empty hypothesis associated

with a null antecedent (used in axioms); and (4) final states are those whose

signatures are associated with goal items.5

Figure 6.1 is the weighted logic that implements G(x) for an input sen-

tence of length I. In the program, G(x) is parameterised without a language

model, that is, a transition is weighted by the translation features φ, which

are local to the biphrase, and by the distortion cost δ. An item in the pro-

gram has the form [i, V, γ], where i is the last source position covered by the

most recently chosen biphrase, V is a coverage bit vector of length I, and γ

is a target phrase. An instantiated biphrase 〈xi′i , γ〉, also denoted by a rule

item R(xi
′
i , γ), is such that it covers the input span i . . . i′ producing a target

phrase γ. A rule item R(xi
′
i , γ) is a short for 〈xi′i , γ〉 ∈ R, where the collection

4Weighted deduction is discussed in Section 5.3. For a more comprehensive discussion
refer to (Goodman, 1998). Lopez (2009) formalises several phrase-based search spaces
using weighted deduction.

5Recall that a hypergraph with multiple goal nodes can be easily converted into a
hypergraph with a single goal node (see Section 2.3).
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Goal [i ∈ {1 . . . I}, 1I , γ]

Axioms
R(xi

′
i+1, γ)

[i′, 0i1i′−i0I−i′ , γ] : δ(0, i+ 1) + φ(〈xi′i+1, γ〉)

Concatenate
[i′′, V, γ′] R(xi

′
i+1, γ)

[i′, V ∨ 0i1i′−i0I−i′ , γ] : δ(i′′, i+ 1) + φ(〈xi′i+1, γ〉)
V ∧ 0i1i

′−i0I−i
′
= 0I

Figure 6.1: Phrase-based translation lattice (without LM)

R is the implicit set of instantiated biphrases.6

A deduction of the kind [i,V,γ]
[i′,V ′,γ′]:ω

is associated with a transition e :

〈i, V, γ〉 γ′:ω−−→ 〈i′, V ′, γ′〉 where t[e] = 〈i, V, γ〉 is the origin state (or tail),

h[e] = 〈i′, V ′, γ′〉 is the destination state (or head), w[e] = ω is the edge’s

weight and i[e] = γ′ is the edge’s label.7 The Goal of the program is to prove

items that cover all source positions exactly once. The non-overlapping con-

straint is represented by the side condition V ∧ 0i1i
′−i0I−i

′
.8 The operator ∧

is a bitwise AND and 0i1i
′−i0I−i

′
represents a bit vector of length I, where

the first i and the last I−i′ bits are set to 0, and the inner i′−i bits are set to

1 (representing the source phrase being covered). This bit vector represents

an update rule — note how the consequent in Concatenate updates V us-

ing the bitwise OR ∨. This program constructs the space of all derivations

that translate each input word exactly once weighted only locally (however

including the distortion cost).

There is a finite number of target phrases per input phrase, and this

number is typically limited by a constant B. The space complexity of the

6This set can be seen as the implicit intersection between the input (encoded as an
identity-transducer) and an unweighted FST representing the phrase table.

7With some abuse of language we use 〈i, V, γ〉 to denote the state in the lattice associ-
ated with the item whose signature is [i, V, γ].

8In this representation, let vm represent m repetitions of v if m > 0, otherwise, vm

returns a vector of length 0.
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program in Figure 6.1 is O(I32IB), by inspection of the free variables in

the program. A linear factor I is due to the need to track down the last

source position that has been covered. A quadratic factor I2B is due to the

number of segmentations of the input and their translations, however, with

a maximum phrase length L this factor is lowered to IL2B. Finally, the bit

vector leads to an exponential factor 2I , which makes G(x) intractable in

the general case. Lopez (2009) documents a number of strategies to limit

reordering lowering the exponential dependency on input length to 2d where

d is a constant called the distortion limit.9 A distortion limit characterises

a form of pruning that acts directly in the generative capacity of the model.

In this thesis we are interested in the original NP-complete formulation, i.e.,

without a distortion limit.

Decoding requires re-weighting the translations in G(x) by the language

model A. The space of solutions is given by the intersection G∩A = G(x)∩A,

which is itself a wFSA and represents the goal distribution p over which we

want to perform inference. The intersection with an n-gram language model

adds a multiplicative factor In−1 to the complexity we have just discussed.10

This intersection is prohibitive to compute exactly, except for short sentences

using a low-order language model. Recall that the number of states of A

grows exponentially with the order n of the language model. Moreover,

unless a distortion limit rules out certain permutations of the input, the

translation lattice G(x) grows exponentially with the length of the input f .

9One strategy is to impose a maximum distortion d. That is, a biphrase that covers
xi

′

i and extends the item [i′′, V, γ] must comply with |i− i′′| ≤ d. Another strategy, in use
in the Moses toolkit (Koehn et al., 2007), establishes that the last source word covered
by any biphrase must be within d words from the leftmost uncovered source position, i.e.,
|i′ − l| ≤ d, where l tracks this leftmost word. The interaction of the first strategy with
histogram and threshold pruning leads to a high number of dead hypotheses in the beam-
search dynamic program. That is, hypotheses that cannot be extended by any biphrase
respecting the distortion limit. These dead hypotheses compromise decoding in that stacks
are filled with hypotheses that can never lead to complete derivations (Lopez, 2009).

10The size of the target vocabulary depends linearly on the input length due to the limit
on the maximum number of translations per source segment.
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Goal [i ∈ {1 . . . I}, 1I , EOS • , yJJ−n+3 EOS]

Axioms
R(xi

′
i+1, y1γ)

[i′, 0i1i′−i0I−i′ , y1 • γ, y1
3−n] : wA

where yj≤0 = BOS

wA = φ(〈xi′i+1, y1γ〉) + δ(0, i+ 1) + ψ(y1|y0
1−n)

Concatenate

[i′′, V, γ′ • , yj−1
j−n+1] R(xi

′
i+1, yjγ)

[i′, V ∨ 0i1i′−i0I−i′ , yj • γ, yjj−n+2] : wC
V ∧ 0i1i

′−i0I−i
′
= 0I

where wC = φ(〈xi′i+1, yjγ〉) + δ(i′′, i+ 1) + ψ(yj|yj−1
j−n+1)

Scan

[i′, V, γ′ • yjγ, yj−1
j−n+1]

[i′, V, γ′yj • γ, yjj−n+2] : ψ(yj|yj−1
j−n+1)

Accept
[i, V, γ • , yJJ−n+2]

[i, V, EOS • , yJJ−n+3 EOS] : ψ(EOS|yJJ−n+2)

Figure 6.2: Full search space in phrase-based SMT

The weighted logic in Figure 6.2, adapted from (Lopez, 2009), implements

G∩A exactly.11 An item in the program is denoted by [i, V, γ′yj • γ, yj−1
j−n+1],

where (1) i tracks the last position covered in the input; (2) V is a cover-

age bit vector of length I; (3) γ′yj • γ is a target phrase whose prefix γ′yj

has been scanned and γ is yet to be scanned; and (4) yjj−n+1 is a context

history representing the n − 1 words preceding the dot (it might contain a

string longer than γ′yj). Scanning concerns the intersection with an n-gram

language model, that is, scanned words have their LM weights incorporated

with respect to the preceding n− 1 target words (observe the component ψ

11Recall that a wFSA is an instance of a hypergraph, therefore the weighted logic in
Figure 5.1 (Earley intersection) also implements G∩A exactly. The program in Figure
6.2 is discussed to highlight the connections with the dynamic program of a beam-search
procedure, where an n-gram target language model is instantiated only implicitly.
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contributing to the weight of the items in the program). In this program

there are two types of transitions: (1) those that select a biphrase consuming

an input span and producing the first word of the target phrase, and (2) those

that scan through the remaining target words within the phrase pair without

consuming additional input words. The former corresponds to a deduction

of the kind

[i, V, γ • , yj−1
j−n+1]

[i′, V ′, yj • γ′, yjj−n+2] : ω
,

which is associated with a transition e, such that t[e] = 〈i, V, γ • , yj−1
j−n+1〉,

h[e] = 〈i′, V ′, yj • γ′, yjj−n+2〉, w[e] = ω and i[e] = yj. The latter corresponds

to a deduction of the kind

[i, V, γ′ • yjγ, yj−1
j−n+1]

[i, V, γ′yj • γ, yjj−n+2] : ω
,

which is associated with a transition e, such that t[e] = 〈i, V, γ′ • yjγ, yj−1
j−n+1〉,

h[e] = 〈i, V, γ′yj • γ, yjj−n+2〉, w[e] = ω and i[e] = yj.

In analogy to standard dynamic programming, the Axioms extend the

null hypothesis by selection of a biphrase. Partial hypotheses whose target

phrases have been completely scanned, represented by items where the dot

is at the end of the phrase, are extended from left to right in target language

order by a non-overlapping biphrase (see Concatenate). The operation

Scan moves the dot forward in the phrase incorporating LM weights and

updating the context history. The operation Accept incorporates the weight

of the end-of-sentence symbol (EOS) in context. The Goal is to translate

every input word exactly once, incorporating the LM weights of all target

n-grams. This program builds the fully parameterised space of all derivations

that translate each input word exactly once. In the next sections we discuss

how we relax G(x) making it tractable and how a proxy to G∩A is built and

incrementally refined following the methodology introduced in Chapter 4.
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6.2 An OS∗ approach to phrase-based SMT

Recall that the full intersection G(x) ∩ A defines a weighted set of trans-

lation derivations 〈D, p〉, where p is an unnormalised goal distribution p.

Derivations in D comply with the non-overlapping constraint imposed by

our model of translational equivalence and encoded in G(x). We introduce

an approach where instead of explicitly constructing the full intersection

G(x) ∩ A we incrementally produce a sequence of “proposal” lattices q(t),

all of which upperbound p, where q(0) = G′(x) ∩ A(0), q(1) = q(0) ∩ A(1),

. . . , q(t+1) = q(t) ∩ A(t+1), etc.12 G′(x) is a relaxation of G(x) which does

not enforce the non-overlapping constraint everywhere in the lattice. That

is, G′(x) includes at least all derivations in G(x), but it also includes in-

valid derivations containing overlapping phrases. A(0) is an upperbound on

the language model distribution, that is, it is an optimistic, low complex-

ity version of the automaton A which forgets the contexts of the n-grams.

Each proposal distribution defines a weighted set of translation derivations

〈D′, q(t)〉. This set is such that D ⊆ D′ and q(t) upperbounds p everywhere,

i.e., q(t)(·) ≥ p(·). Each increment A(t) is a small automaton that either:

(1) incorporates to q(t−1) some specific k-gram context (i.e. sequence of k

words) not yet made explicit in the previous increments, where k takes some

value between 1 and n; or (2) constrains q(t−1) preventing some overlaps

from happening, which has the effect of removing from q(t−1) some of its in-

valid derivations. This process produces a sequence of proposals such that

q(0)(·) ≥ q(1)(·) ≥ q(2)(·) ≥ · · · ≥ p(·).

In Section 6.2.1, we introduce different strategies to produce a simple

and compact lattice G′(x) in the absence of a distortion limit. The weighted

logic shown in Figure 6.3 implements one such strategy. An item in the

program is denoted by [〈xi′i , γ′yj • γ〉, c], where: (1) 〈xi′i , γ′yj • γ〉 is a dotted

12With some abuse of language we refer to the distribution meaning the weighted set
and write q(t) ∩A(t+1).
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Goal [〈xi′i , γ • 〉, I]

Axioms
R(xi

′
i , y1γ)

[〈xi′i , y1 • γ〉, i′ − i+ 1] : φ(〈xi′i , y1γ〉) + δ(0, i)

Concatenate
[〈xl′l , γ′ • 〉, c] R(xi

′
i , yjγ)

[〈xi′i , yj • γ〉, c+ i′ − i+ 1] : φ(〈xi′i , yjγ〉) + δ(l′, i)

i > l′ ∨ i′ < l
c+ i′ − i+ 1 ≤ I

Scan
[〈xi′i , γ′ • yjγ〉, c]

[〈xi′i , γ′yj • γ〉, c] : 1̄

Figure 6.3: G(x): relaxed translation lattice

biphrase whose prefix γ′yj has already been scanned and the suffix γ is yet

to be scanned; and (2) c is the number of source words covered thus far.

The Goal of the program is to prove items that cover I input words. The

Axioms extend the null hypothesis by addition of one phrase pair. Note

that the language model is not part of the parameterisation at this point. In

Concatenate, hypotheses are extended from left to right in target language

order by selection of phrase pairs that do not overlap with the immediately

preceding choice of biphrase. If the spans xl
′

l and xi
′
i are covered by the

previous and the current biphrase, respectively, then the side condition i >

l′ ∨ i′ < l prevents adjacent transitions from overlapping. The side condition

c+ i′− i+ 1 ≤ I prevents the construction of derivations covering more than

I words. Observe that there is no coverage bit vector preventing overlaps

beyond the context of adjacent transitions. The operation Scan moves the

dot forward within a biphrase. This program constructs the space of all

derivations that translate exactly I words weighted only locally (however

including the distortion cost).
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By inspection of the free variables in the program, the search space com-

plexity is O(I6B), where: (1) a linear term I is due to the need to track the

number of words translated; (2) another linear term IB concerns the target

phrases; (3) a quadratic term I2 is due to the need to track the previous

biphrase; and (4) another quadratic term I2 is due to the current biphrase.

With a maximum phrase length L, (3) and (4) are both lowered to linear

terms IL2. At the cost of producing derivations that would not be defined

in G(x), this relaxed space has no exponential dependency on I (see Section

6.2.1 for other definitions of G′(x)).

Consider an enriched terminal symbol represented as a triple 〈b, d, c〉,
where: (1) b is an instantiated biphrase such as 〈xi′i , y

j+k
j+1〉; (2) d refers to a

dot positioned adjacently to the right of yj+d in yj+kj+1 ; and (3) c is the number

of source words covered thus far. Similarly to the program in Figure 6.2, the

program in Figure 6.3 defines two types of transitions. The transitions that

begin a biphrase correspond to deductions of the kind

[〈xl′l , γ′ • 〉, c′]
[〈xi′i , yj+1 • γ〉, c] : ω

.

Each such deduction (see Concatenate) is associated with a transition

e such that t[e] = 〈〈xl′l , γ′ • 〉, c′〉, h[e] = 〈〈xi′i , yj+1 • γ〉, c〉, w[e] = ω and

i[e] = 〈b, 1, c〉, where 〈b, 1〉 represents the dotted biphrase 〈xi′i , yj+1 • γ〉. The

other transitions correspond to deductions of the kind

[〈xi′i , γ′ • yj+dγ〉, c]
[〈xi′i , γ′yj+d • γ〉, c] : ω

.

Each such deduction (see Scan) is associated with a transition e such that

t[e] = 〈〈xi′i , γ′ • yj+dγ〉, c〉, h[e] = 〈〈xi′i , γ′yj+d • γ〉, c〉, w[e] = ω and i[e] =

〈b, d, c〉, where 〈b, d〉 represents the dotted biphrase 〈xi′i , γ′yj+d • γ〉.13 La-

belling edges with these triples, rather than target words alone, will be

13A biphrase b whose target phrase contains k words, in a partial derivation that cov-
ers c input words, motivates a sequence of k transitions 〈〈b, 1, c〉, . . . , 〈b, k, c〉〉, each one
producing one of the k target words in the biphrase.
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useful later when we introduce strategies to incrementally incorporate non-

overlapping constraints to the proposals.

Consider an edge e labelled with a triple i[e] = 〈b, d, c〉, where b =

〈xi′i , y
j+k
j+1〉, d ∈ [1 . . . k] and c ∈ [1 . . . I]. The following operators help charac-

terise the edge: (1) b[e] returns the instantiated biphrase b, where bx[e] refers

to the input phrase and by[e] refers to the output phrase; (2) d[e] returns the

position d of the dot, which refers to the word in by[e] produced by e; (3) y[e]

returns the target word produced by the edge, that is, the word yj+d to the

left of the dot; (4) c[e] returns the number c of input words already covered;

(5) xi[e] returns 1 if e covers input position i, i.e. xi ∈ bx[e], and e begins a

biphrase, i.e. d[e] = 1, otherwise it returns 0. The same operators also apply

directly to triples, rather than edges. That is, if t = i[e] is a triple, then b[t],

c[t], d[t], xi[t] and y[t] are defined as before.

We define the vocabulary of the lattice G′(x) to be the set Σ of all enriched

labels defined by the program in Figure 6.3. We know from the logic program

that, given a pair of adjacent transitions (e, e′) in a derivation from G′(x),

either: (1) they recognise adjacent target words within the same biphrase,

i.e. b[e] = b[e′] and d[e′] = d[e] + 1; or (2) they represent the concatenation

of two non-overlapping biphrases, i.e. bx[e]∩bx[e
′] = ∅ and d[e] = |by[e]| (all

words in by[e] have been recognised) and d[e′] = 1 (e′ begins the biphrase

b[e′]).

Let a derivation d = 〈e1, e2, . . . , eJ〉 be a sequence of J edges. The deriva-

tion recognises a string of triples i[d] = 〈i[e1], i[e2], . . . , i[eJ ]〉 = 〈t1, t2, . . . , tJ〉,
where each triple has the form tj = 〈b, d, c〉 ∈ Σ. We are also interested in

the translation string defined by d, that is, its target yield, which is denoted

by y[d] = 〈y[e1], y[e2], . . . , y[eJ ]〉 = 〈y[t1], y[t2], . . . , y[tJ ]〉 = 〈y1, y2, . . . , yJ〉.
Finally, let us also characterise d with respect to how it covers the input.

Let xi[d] return the number of times the input word xi is translated in d,

that is, xi[d] =
∑J

j=1 xi[ej]. A valid derivation is such that xi[d] = 1 for
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i = 1 . . . I. A valid derivation d may be accepted or rejected based on the

ratio r(d) ≡ p(d)

q(t−1)(d)
. If rejected, it may motivate a refinement that incor-

porates some additional context to the proposal bringing it closer to p. An

invalid derivation is such that xi[d] 6= 1 for some i ∈ [1 . . . I]. If d is an

invalid derivation, then d /∈ D, p(d) = 0 and r(d) = 0. Thus, an invalid

derivation is always rejected and it may motivate a refinement that adds

some of the non-overlapping constraints to the current proposal.

If a valid derivation d from q(t−1) motivates a refinement, we proceed as

discussed in Section 4.2.3. That is, we identify in the yield y = y[d] = yJ1 a

sequence yj−kyj−k+1 . . . yj such that the knowledge of the n-gram yjj−k+1 has

been registered in q(t−1), but not that of the n-gram yjj−k. We then select

the context yj−1
j−k+1 and extend it with one word to the left. The automaton

A(t) is designed to update all 1-word continuations of this extended context

yj−1
j−k. That is, A(t) scales each occurrence of an n-gram of the form yj−1

j−kz,

where z is a target word, by a factor αz as shown in Equation 6.1. We then

obtain a refined proposal q(t) = q(t−1) ∩A(t) and bookkeep the n-grams yj−1
j−kz

as described in Section 4.2.4.

αz =
wk+1(z|yj−1

j−k)

wk(z|yj−1
j−k+1)

(6.1)

If an invalid derivation d̃ = 〈e1, e2, . . . , eJ〉 from q(t−1) motivates a refine-

ment, then one possible strategy is to perform the update q(t) = q(t−1)−D(d̃),

where D(d̃) is an unweighted deterministic automaton that accepts d̃, and

only d̃.14 The resulting proposal is such that

q(t)(d) =

 q(t−1)(d) if d 6= d̃

0̄ otherwise.

14The difference operation between a wFSA A and an unweighted FSA B can be ex-
pressed in terms of the intersection between A and the complement of B. Because wFSAs
are closed under complementation and under intersection (Hopcroft and Ullman, 1969),
the difference operation returns another wFSA. Mohri (2009) presents a straightforward
procedure for complementation of deterministic automata in linear time.
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On the one hand, this operation is very cheap to compute and it increases the

proposal by adding only J states on average. On the other hand, this update

is extremely conservative incorporating non-overlapping constraints only in

the specific context of d̃. A much more extreme strategy would identify a

position i for which xi[d̃] > 1 and remove from q(t−1) every derivation d for

which xi[d] > 1. This can be done by (1) designing the automaton Oi (for

“overlap at i”) that recognises the language (over triples) Σ∗XiΣ
∗XiΣ

∗ ⊆ Σ∗,

where Xi = {t ∈ Σ : xi[t]} ⊆ Σ is the set of triples from Σ that cover xi; and

(2) removing from q(t−1) all derivations compatible with Oi, i.e. q(t) = q(t−1)−
Oi. Observe that paths in Oi contain at least two triples from Xi, therefore,

at least two triples consuming i. This extreme strategy generalises from d̃

preventing many more invalid derivations from ever happening. However,

it does so at the cost of a large increase in the lattice associated with q(t).

One can think of this strategy as incorporating to every state in q(t−1) one

bit of information dedicated to encoding whether or not position i has been

covered by any partial derivation reaching that state. This has the effect of

multiplying the number of states in the lattice q(t−1) by two. In the extreme

case, in which such constraints are added for ever input word, i.e. i ∈ [1 . . . I],

the resulting lattice enumerates all 2I states necessary to perform inference

in the absence of a distortion limit.15

Algorithm 11 illustrates the general procedure. In line 2, we start with a

proposal q(0) that is the intersection between an upperbound on the trans-

lation lattice G′(x) and an upperbound on the language model distribution

A(0). Until convergence, we sample or optimise d from the current proposal

(line 4). If d is invalid, then there is no need to evaluate p(d) and we can

set r(d) to 0 (line 6). Otherwise, we compute the ratio between the goal and

the proposal at d (line 8). In line 10, the derivation is accepted or rejected

15This extreme way of incorporating non-overlapping constraints is equivalent to what
is done by Chang and Collins (2011) in the context of tightening a Lagrangian relaxation.
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Algorithm 11 OS∗ for phrase-based SMT
1: t← 0, converged← false . in sampling also does AR← 0
2: q(0) ← G′(x) ∩A(0)

3: while not converged do
4: d← search(q(t)) . argmax or sample
5: if ∃i : xi[d] 6= 1 then . if there are overlaps
6: r ← 0
7: else
8: r ← p(d)/q(t)(d)

9: end if
10: accept← assess(r) . deterministic in optimisation, random in sampling
11: if not accept then . if d was rejected
12: define A(t+1) based on d and q(t)

13: q(t+1) ← q(t) ∩A(t+1) . update proposal
14: end if
15: t← t+ 1
16: converged← update(r, accept) . in sampling this also updates AR
17: end while
18: return accepted samples along with q(t)

depending on the ratio r and the mode in which OS∗ is running (optimisa-

tion or sampling). In optimisation, d is accepted if the ratio is close enough

to one. In sampling, d is accepted with probability r. Note that, in either

mode, if r(d) = 0 the derivation is rejected. When a derivation is rejected we

proceed by updating the proposal. If d is valid, in line 12, A(t+1) is an au-

tomaton that explicitly accounts for some k-gram context not yet registered

in q(t−1). If d is invalid, in line 12, A(t+1) is an automaton that constraints

q(t−1) by removing some overlapping derivations (including at least d itself).

Finally, to achieve faster intersections it is necessary to control the size

of the lattice, which can be done by refining it, not everywhere, but rather

in regions that are likely to participate in high-scoring derivations. The

selective intersection introduced in the context of hierarchical models (see

Section 5.3.2) can be used with phrase-based models in a straightforward

manner. Moreover, it can be used with both types of refinements, namely,

those that incorporate k-gram contexts, lowering the proposal, and those

that remove invalid (overlapping) derivations from the proposal.

160



CHAPTER 6. PHRASE-BASED TRANSLATION WITH OS∗

6.2.1 Relaxed lattices

We introduced an upperbound to G(x) that is based on relaxing the non-

overlapping constraint. In that relaxation, we replace the coverage vector

(which prevents overlaps in Figure 6.2) by some simpler information, namely,

a count of words translated and the most recently selected biphrase. Let us

call that strategy tb, short for tracking the last biphrase. In this section we

propose alternative upperbounds to G(x) by relaxing the non-overlapping

constraint in different ways. These alternative relaxations allow one to start

from a space that already encodes a larger subset of the non-overlapping

constraints, while avoiding G′(x) to grow exponentially with the length of

the input x. The key is to allow fewer overlapping derivations in G′(x) at

the cost of some small (controlled) increase in space complexity.

The logic program in Figure 6.4 implements one such upperbound. Rather

than using a bit vector to explicitly account for all non-overlap constraints,

this program tracks the last contiguous span (ts) covered in the input, pre-

venting biphrases to overlap with that span. An item in the program has the

form [〈xts〉, r, γ′yj • γ, c], where: (1) 〈xts〉 represents the last contiguous input

span covered; (2) r tracks the rightmost position covered in the input; (3)

γ′yj • γ is a dotted target phrase; and (4) is the number of source words cov-

ered thus far. Because we track the last contiguous sequence covered, rather

than the last biphrase selected, we need an extra variable to track the last

word translated, which is necessary for the computation of distortion costs.

The Goal of the program is to prove items that cover exactly I words.

The Axioms extend the empty hypothesis by selection of a biphrase. Con-

catenate extends an item [〈xts〉, r, γ • , c] by concatenation of a biphrase

〈xt′s′ , yjγ′〉 from left to right in target language order. The deduction only

happens if the selected biphrase does not overlap with the span 〈xts〉 and if

the resulting item would cover at most I input words. The side condition

s′ > t ∨ t′ < s prevents the overlap. If 〈xts〉 and 〈xt′s′〉 are not adjacent, the
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Goal [〈xts〉, r, γ • , I]

Axioms
R(xts, yjγ)

[〈xts〉, t, yj • γ, t− s+ 1] : φ(〈xts, yjγ〉) + δ(0, s)

Concatenate

[〈xts〉, r, γ • , c] R(xt
′
s′ , yjγ

′)

[〈xt′′s′′〉, t′, yj • γ′, c+ t′ − s′ + 1] : φ(〈xt′s′ , yjγ′〉) + δ(r, s)

s′ > t ∨ t′ < s
c+ t′ − s′ + 1 ≤ I

where s′′ = s if s′ = t+ 1 else s′

t′′ = t if t′ = s− 1 else t′

Scan
[〈xts〉, r, γ′ • yjγ, c]

[〈xts〉, r, γ′yj • γ, c] : 1̄

Figure 6.4: ts: tracking the last contiguous input span covered.

last contiguous span in the consequent is that of the selected biphrase, i.e.,

〈xt′′s′′〉 = 〈xt′s′〉. If 〈xts〉 and 〈xt′s′〉 are adjacent and the former precedes the latter

in source language order, the last contiguous span in the consequent is 〈xt′s 〉.
If they are adjacent, but the latter precedes the former, then 〈xt′′s′′〉 = 〈xts′〉.
Finally, Scan moves the dot forward in the target phrase, however, at this

point the LM is not part of the parameterisation.

The program in Figure 6.4 is inspired by the relaxation in Chang and

Collins (2011), who work in the context of exact optimisation using La-

grangian relaxation (see Section 3.3.2). However, it is important to highlight

that Chang and Collins (2011) do make use of a distortion limit constraining

the space of solutions reachable by their phrase-based model considerably —

this is not the case in our approach. The program that implements Chang

and Collins’s relaxation exactly requires an additional condition to Con-

catenate which prunes out derivations that violate a distortion limit d,

namely, |r − s′| ≤ d.

The space complexity of the program is O(I7B) where: (1) a linear fac-
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Goal [〈L, i, R〉, γ • , I]

Axioms
R(xts, y1γ)

[〈0min(d,s−1), t, 0min(d,I−t)〉, y1 • γ, t− s+ 1] : φ(〈xts, y1γ〉) + δ(0, s)

Concatenate
[〈L, i, R〉, γ • , c] R(xts, yjγ

′)

[〈L′, t, R′〉, yj • γ′, c+ t− s+ 1] : φ(〈xts, yjγ′〉) + δ(i, s)

c+ t− s+ 1 ≤ I
V ∧ V ′ = 0I

where V = 0i−d−1L1R0I−i−d . coverage vector of the antecedent
V ′ = 0s−11t−s+10I−t . coverage vector of xts
bI1 = V ∨ V ′ . updated coverage vector

L′ = trim(bt−1
t−d) . d bits to the left of t

R′ = trim(bt+dt+1) . d bits to the right of t

Scan
[〈L, i, R〉, γ′ • yjγ, c]

[〈L, i, R〉, γ′yj • γ, c] : 1̄

Figure 6.5: tww: tracking a window around the last word translated.

tor I is due to the need to track r; (2) another linear factor I is due to c;

(3) a factor IB, where B is the maximum number of biphrases per source

segment, is due to the dotted target phrases; (4) a quadratic factor I2 is

due to the longest contiguous span 〈xts〉; and (5) another quadratic factor

I2 is due to the current biphrase. With a maximum phrase length L, (4)

is lowered to IL2. In relation to the program in Figure 6.3, this one pro-

duces fewer invalid derivations, particularly, when hypotheses are expanded

covering contiguous input spans. In terms of complexity, it requires tracking

r ∈ [1 . . . I] separately from 〈xts〉.

The logic program in Figure 6.5 implements another upperbound to G(x).

This logic is an attempt to start from a search space that is closer to what

a search space with a distortion limit looks like, however, still not imposing

a distortion limit. Instead, the program prevents overlaps from happening

only within a window of radius d around the last word translated. Beyond
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the limits of that window, overlaps might happen. Let us call this program

tww for tracking window centred in the last word translated. An item of the

program has the form [〈L, i, R〉, γ′yj • γ, c] where: (1) 〈L, i, R〉 is a window of

radius d around the last word translated i; L and R are coverage bit vectors

of length d; they store coverage information for d positions to the left and to

the right of i, respectively; (2) γ′yj • γ is a dotted target phrase; and (3) c is

the number of words translated thus far.

The Goal of the program is to prove items covering exactly I words. The

Axioms expand the empty hypothesis by selection of a biphrase. Observe

how the last word xt of the biphrase becomes the centre of the window

and the coverage vectors start with at most d zeros each. Concatenate

extends an item [〈L, i, R〉, γ • , c] from left to right in target language order

by concatenating the biphrase 〈xts, yjγ′〉 if xts does not overlap with 〈L, i, R〉
and if the resulting item would cover at most I input words. Consider the

vector V = 0i−d−1L1R0I−i−d in the rule. V represents the coverage vector of

the antecedent where everything before the first position represented by L

and after the last position represented by R has been forgotten (completed

by trailing zeros). The 1 in the middle represents the position i (last word

translated) and |V | = I. The coverage vector V ′ = 0s−11t−s+10I−t represents

the biphrase being selected, it covers exactly xts. The side condition V ∧V ′ =
0I prevents overlaps to happen within 〈L, i, R〉. The coverage information in

the consequent is a trimmed down version of bI1 = V ∨V ′ (the vector updated

via bitwise OR). L′ = trim(bt−1
t−d), where trim ignores positions below 1 and

beyond I in the subsequence, is the part that concerns the left wing of the

window, and similarly for R′. Finally, Scan moves the dot forward in the

target phrase without incorporating the LM weights at this point.

The space complexity of the program is O(I5B22d) where: (1) a linear

factor 22dI is due to the window 〈L, i, R〉, where the constant 22d is due to L

and R; (2) a linear factor IB is due to the dotted target phrases; (3) another
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linear factor I is due to c; and (4) a quadratic factor I2 is due to the number

of segmentations of the input. With a maximum phrase length, (4) is made

linear on input length.

It is straightforward to combine ts and tww to track a window of radius

d around the last contiguous input span. The logic in Figure 6.6 implements

this tracking window around the last contiguous span (tws) strategy. The

program has items of the form [〈L, s, t, R〉, r, γ′yj • γ, c] where r is necessary

to track the last word translated (for the purpose of computing distortion

costs) and the pair (s, t) tracks the boundaries of the last contiguous span.

The vectors L and R contain coverage information for d positions before s

and d positions after t, respectively. The space complexity of this program

is O(I7B22d).

6.2.2 Dealing with overlapping phrases

In this section, we describe different strategies to deal with derivations con-

taining overlapping phrases. In incorporating non-overlapping constraints,

there is a trade-off between generalisation and representation cost. On the

one hand, incorporating few constraints grows the lattice very little at each

iteration, however, more iterations are required before convergence. Imag-

ine the scenario in which each time an invalid derivation d̃ is sampled (or

optimised) we deal with it by using the conservative strategy introduced in

Section 6.2, namely, we remove that specific derivation from the proposal.

If our relaxation is such that many invalid derivations are possible in G′(x),

then they might keep on showing up as samples or optima and we will need

to deal with them one by one. On the other hand, incorporating many con-

straints at once reduce the number of iterations necessary for convergence,

but it largely increases the lattice. Exponentially large lattices become a

problem for dynamic programming, which is in the core of most search algo-

rithms including ours. The intersection with a wFSA that lowers the proposal
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Goal [〈L, s, t, R〉, r, γ • , I]

Axioms
R(xts, y1γ)

[〈L, s, t, R〉, t, y1 • γ, t− s+ 1] : φ(〈xts, y1γ〉) + δ(0, s)
where L = 0min(d′,s−1)

R = 0min(d′′,I−t)

Concatenate

[〈L, s, t, R〉, r, γ • , c] R(xt
′
s′ , yjγ

′)

[〈L′, s′′, t′′, R′〉, t′, yj • γ′, c+ t′ − s′ + 1] : w

c+ t′ − s′ + 1 ≤ I
(s′ > t ∨ t′ < s)
V ∧ V ′ = 0I

where V = 0s−d
′−1L1t−s+1R0I−t−d

′′
. coverage vector of the antecedent

V ′ = 0s
′−11t

′−s′+10I−t
′

. coverage vector of xts
bI1 = V ∨ V ′ . updated coverage vector
s′′ = s if s′ = t+ 1 else s′

t′′ = t if t′ = s− 1 else t′

L′ = trim(bs
′′−1
s′′−d) . d bits to the left of s”

R′ = trim(bt
′′+d
t′′+1) . d bits to the right of t”

w = φ(〈xt′s′ , yjγ′〉) + δ(r, s′)

Scan
[〈L, s, t, R〉, r, γ′ • yjγ, c]

[〈L, s, t, R〉, r, γ′yj • γ, c] : 1̄

Figure 6.6: tws: tracking the window around last contiguous span.

bringing it closer to the goal by incorporation of larger n-grams on demand

is an example of a dynamic program. The Inside algorithm necessary for

optimisation and sampling is another example.

If an invalid derivation d̃ = 〈e1, e2, . . . , eJ〉 from q(t−1) motivates a refine-

ment, one possible strategy already discussed (see beginning of Section 6.2)

is to perform the update q(t) = q(t−1) ∩ D̄(d̃). D(d̃) is an unweighted deter-

ministic automaton that accepts d̃, and only d̃, and D̄(d̃) its complement.

The proposal q(t) will differ from q(t−1) only for the derivation d̃. Let us call

this strategy od, a short for one derivation.
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If od represents one extreme, then ad (all derivations) represents the

other. We perform the update q(t) = q(t−1) ∩ Ōi where Oi, is the automaton

that recognises all derivations (without altering their weights) translating xi

multiple times and i is motivated by d̃. The automaton Ōi recognises the

complement of the language Σ∗XiΣ
∗XiΣ

∗ ⊆ Σ∗. The set Xi = {t ∈ Σ :

xi[t] = 1} ⊆ Σ contains all triples that begin a biphrase consuming xi, i.e.,

xi ∈ bx[t] ∧ d[t] = 1.

Another extreme strategy somewhat related to ad is to force the trans-

lation of a certain word (ft). If some input word xi′ is translated multiple

times, then there exists at least one position i that was never translated, i.e.,

∃i : xi[d̃] = 0. This is true because every derivation must cover exactly I

words. Let Mi = {t ∈ Σ : xi ∈ bx[t]} ⊆ Σ be the set of triples that cover

the missing position. We can perform the update q(t) = q(t−1) ∩ Fi, where Fi

is the automaton that recognises the set of all derivations (without altering

their weights) that necessarily translate i, i.e., Σ∗MiΣ
∗ ⊆ Σ∗. Observe that

this update does not enforce a non-overlapping constraint for position i, it

simply requires i to be covered at least once. Both ad and ft implicitly add

one bit to each state of the lattice to encode information about the position

of interest duplicating the lattice in the worst case.

Many intermediary strategies can be designed. For example, one can re-

move all derivations overlapping at a certain position sharing a certain prefix

in d̃. Alternatively, if tj and tj+k are overlapping triples in d̃, both con-

suming position i, one can remove derivations overlapping at i which share

the substring tj+|by [tj ]| . . . tj+k−1. Designing strategies to deal with overlap-

ping phrases is a very experimental task and there is no net method. We

discussed here some of the most straightforward. In what follows, we pro-

pose a more principled solution that capitalises on the current proposal to

dynamically discover the set of constraints that are most often violated.

Suppose an invalid derivation is such that xi[d̃] > 1. Also consider we
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are working with the strategy ad. Thus, we proceed by computing the set

Xi = {t ∈ Σ : xi[t] = 1} ⊆ Σ of all triples consuming xi. We can rely on

edge marginal weights to have a summarised view of Xi that contains only

the most likely triples X ′i. Alternatively, one could make use of sampling at

any moment, regardless of the mode in which OS∗ performs, to explore the

distribution finding a certain X ′i ⊆ Xi which contains triples likely to overlap

due to xi. Finally, we chose O′i the automaton that recognises the language

Σ∗X ′iΣ
∗X ′iΣ

∗ ⊆ Σ∗ and perform the update q(t) = q(t−1)∩ Ō′i. This will add a

relevant set of non-overlapping constraints at a lower cost than the original

ad strategy. This strategy can be seen as a form of selective intersection,

where rather than implicitly incorporating an additional bit of information

to every state of the lattice q(t−1), we implicitly do that only in the context

of triples that are likely to be sampled from q(t−1).

A final direction that we have left for future work concerns the use of

Lagrangian Relaxation (LR) (see Section 3.3.2). In LR, some of the hard

constraints associated with a problem can be modelled through weights (La-

grangian multipliers). These multipliers are easy to add to the parameteri-

sation of the model and they serve the purpose of rewarding (or penalising)

features that capture certain aspects of the constraints to be modelled. Un-

like actual hard constraints, these features are designed to be local to each of

the steps in a derivation. Thus, these multipliers do not increase the search

space complexity. In phrase-based SMT, these local features encode how

many times each position is translated, and the multipliers reward/penalise

each biphrase on the basis of the positions it covers. We can think of LR as

a technique that allows hard constraints to be softly represented by weights.

Chang and Collins (2011) have successfully applied Lagrangian relaxation to

account for a large subset of the non-overlapping constraints necessary to

perform exact decoding (optimisation) with phrase-based models. However,

they work under the assumption of a distortion limit, and they do not address
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Goal [〈xi′i , EOS • 〉, I]

Axioms

R(xi
′
i , y1γ)

[〈xi′i , y1 • γ〉, i′ − i+ 1] : φ(〈xi′i , y1γ〉) + δ(0, i) + w2(y1|BOS)

Concatenate

[〈xl′l , γ′yj−1 • 〉, c] R(xi
′
i , yjγ)

[〈xi′i , yj • γ〉, c+ i′ − i+ 1] : φ(〈xi′i , yjγ〉) + δ(l′, i) + w2(yj |yj−1)

(i > l′ ∨ i′ < l)
c+ i′ − i+ 1 ≤ I

Scan

[〈xi′i , γ′yj−1 • yjγ〉, c]
[〈xi′i , γ′yj−1yj • γ〉, c] : w2(yj |yj−1)

Accept

[〈xi′i , γyj • 〉, I]

[〈xi′i , EOS • 〉, c] : w2(EOS|yj)

Figure 6.7: Initial proposal starting from a 2-gram LM

sampling.

6.3 Initial proposal

As we discussed in Section 6.2.1, the program in Figure 6.3 implements an

upperbound G′(x) to G(x) by relaxation of the non-overlapping constraint.

The program creates a translation lattice where adjacent choices of biphrases

never overlap (see the side condition in Concatenate). While in Sections

6.2 and 6.2.1 we omitted the LM from the parameterisation, the program

in Figure 6.7 shows that it is easy to incorporate a low-order upperbound

on the LM distribution. Particularly, it is straightforward to start from a

bigram representation, rather than a unigram representation (used in the

hierarchical case). Because each state in the lattice defined by the program

implicitly encodes information about a specific target phrase, it is straight-
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forward to add a component w2(yj|yj−1) that upperbounds plm(yj|yj−1) (see

Section 4.2.1) without further increasing the space complexity.

The logic in Figure 6.7 implicitly initialises a proposal q(0) = G′(x)∩A(0),

where G′(x) is chosen to be the derivations produced by the program in

Figure 6.3 and A(0) is chosen to be an optimistic 2-gram version of the full

language model A. In practice, the logic produces q(0) in one go without

the need to explicitly compute the intersection and without the need to

explicitly instantiate A(0). However, it is necessary to bookkeep the target

bigrams compatible with q(0), which is straightforward to do at the time of

its creation.

The same argument applies to the other relaxations discussed in Section

6.2.1.

6.4 Updating the proposal

In this section we describe how a proposal can be refined by the incorporation

of additional n-grams and how it can be constrained by the addition of non-

overlapping constraints. Both operations are defined in terms of standard

weighted finite-state intersection. Constraints can also be added to lattices

by means of the difference operation, otherwise seen as a special case of

intersection which requires complementation.

The logic program in Figure 6.8 implements the weighted finite-state

intersection (Mohri et al., 1996; Cohen et al., 2008). The input of the

program is a pair of wFSAs, namely, 〈Σ, Q1, 〈I1, λ1〉, 〈F1, ρ1〉, 〈E1, ω1〉〉 and

〈Σ, Q2, 〈I2, λ2〉, 〈F2, ρ2〉, 〈E2, ω2〉〉 (see Section 2.2.1). In our application, the

first automaton is acyclic and represents a proposal distribution q(t−1), the

second automaton is not necessarily acyclic and represents some form of re-

finement A(t). Both automata are defined over a vocabulary Σ of triples of

the kind 〈b, d, c〉 (see Section 6.2). The output is an acyclic wFSA that rep-

resents a refined distribution q(t) = q(t−1) ∩A(t) (see Section 2.1.3.1) and has
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Goal [v ∈ F ]

Axioms

[〈q1, q2〉] : λ1(q1)⊗ λ2(q2)
q1 ∈ I1 ∧ q2 ∈ I2

Move

[〈q1, q2〉] E1(q1
t1:w1−−−→ r1) E2(q2

t2:w2−−−→ r2)

[〈r1, r2〉] : w1 ⊗ w2
t1 = t2

Accept
[〈q1, q2〉]

[vg] : ρ1(q1)⊗ ρ2(q2)
q1 ∈ F1 ∧ q2 ∈ F2

Figure 6.8: wFSA intersection

the form q(t) = 〈Σ, Q ⊆ Q1 × Q2, 〈I = {vi}, λ〉, 〈F = {vg}, ρ〉, 〈E,ω〉〉. For

convenience, q(t) has a single initial node vi and a single goal node vg.

An item of the program is a pair of states (one from A1 and another

from A2). It has the form [〈q1, q2〉] where q1 ∈ Q1, q2 ∈ Q2 and 〈q1, q2〉 is

associated with a state in the output wFSA. An edge q
t:w−→ r, also denoted

by an edge item E(q
t:w−→ r), is such that it specifies a transition from q to r

with weight w and labelled with a triple t ∈ Σ. An edge item E(q
t:w−→ r) is

a short for e = 〈q, t, r〉 ∈ E with weight w = ω[e].

The Goal of the program is to prove the goal node vg. The Axioms

combine the initial states of A1 and A2 via the crossproduct I1 × I2, it also

incorporates their weights. Move combines two edges (e1, e2), one from

each automaton, to move from state 〈q1, q2〉 to state 〈r1, r2〉 where (t[e1] =

q1, t[e2] = q2) and (h[e1] = r1, h[e2] = r2). It also incorporates the ⊗-product

of the weights of the edges. The side condition states that the edges must

be labelled with the same triples, i.e., t1 = t2 where t1 = i[e1] and t2 = i[e2].

Finally, Accept incorporates the weights of final nodes from F1 and F2

under a single goal node vg.
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6.4.1 LM refinement

Suppose d = 〈e1, e2, . . . , eJ〉 a valid derivation from q(t−1) that has been

rejected. In Section 6.2, it was explained that d motivates an update in

the proposal q(t−1) which extends n-grams whose context is the sequence

yj−1
j−k+1 with one word to its left, where yj−1

j−k is a sequence in y = y[d]. The

vocabulary of the proposal distribution q(t−1) is made of triples, not of target

words. Therefore, the automaton that performs the update must be specified

in terms of triples.

else

b

b

else

z/αz

else b aq1

q0 q2

Figure 6.9: Down-weighting z in the context of ba

To motivate the idea let us consider a simple update that incorporates the

trigram baz. From Section 4.2.3, the automaton that performs the update is

defined as illustrated in Figure 6.9, where αz = w3(baz)
w2(az)

. Consider the set of all

triples that produce a certain target word y, i.e., Σy = {t ∈ Σ : y[t] = y} ⊆ Σ.

A simple strategy that is directly compatible with the algorithm in Figure 6.8

is to design A(t) to reweight sequences compatible with the language ΣbΣaΣ.

That is, if a transition is to recognise the target word y from state q to state

r, then A(t) contains |Σy| transitions from q to r, each one labelled with a

triple in Σy. This means, that in the automaton shown in Figure 6.9 there

would be a set of transitions from 0 to 1 recognising the triples in Σb, each

of which would be weighted by 1̄. The keyword else in state 0 would then

refer to the set of triples that do not yield b, i.e., Σb̄ = {t ∈ Σ : y[t] 6= b}.
A transition q2

a:αa−−→ q0 would be replaced by |Σa| transitions, each of which
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t7/a

t8/a

t4/b

t9/x

t7/a

t5/c

t9/x
t5/c

t6/b

t4/b

t1/d

t8/a
t6/b

t2/d

t8/a

t7/a

t3/d

t5

t8

t6

t7

t4
bos

t2

t3

t1

eos

Figure 6.10: Example of proposal

would recognise a symbol from Σa and would carry a weight α.

Consider the example in Figure 6.10 where edges are annotated with

triples and, for the sake of illustration, the letter after the forward slash makes

explicit the yield of the triple. The refinement that updates all sequences of

three triples such that the first two triples project onto the target string ba

is illustrated in Figure 6.11. In the figure, ti ∈ Σ is a triple, Σb = {t4, t6}
are triples whose yield is b, and Σa = {t7, t8} are triples whose yield is a.

Transitions from q2 to q0 are weighted by αi = w3(yi|ba)
w2(yi|a)

where yi = y[ti] is the

target word produced by the triple. This strategy can be directly applied to

longer n-grams.

else

t4

t6

t4

t6
t1/α1

· · ·

tn/αn

else

t4

t6

t7

t8

q1

q0

q2

Figure 6.11: Down-weighting ΣbΣaΣ
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t8/a

t9/x

t9/x

t8/a

t7/a

t9/x

t7/a

t8/a

t9/x
t4/b

t5/c

t5/c

t6/b

t4/b

t7/a

t1/d

t6/b

t2/d

t3/d

b̄ t8

b t7

t5

t6

t4bos

t2

t3

t1

eos

b t8

b̄ t7

Figure 6.12: Example of refined proposal

The intersection between q(t−1), as illustrated in Figure 6.10, and A(t), as

illustrated in Figure 6.11, is shown in Figure 6.12. Observe how the intersec-

tion separates everywhere in the lattice paths that include the substring ba

from those that do not. This might expand the lattice in regions that have

low probability.

It is interesting to observe that a refinement could also be defined in terms

of the very specific sequence of triples observed in a derivation. Suppose again

that d motivates a refinement that updates the weight of all n-grams of the

kind yj−1
j−kz where z is a target word. The sequence yj−1

j−k is associated with a

sequence of triples tj−1
j−k in i[d] = 〈t1, t2, . . . , tJ〉. A refinement that updates

1-triple continuations of tj−1
j−k, i.e. tj−1

j−ku where u ∈ Σ is a triple, relates to

a very specific region of the lattice q(t−1), shared by fewer derivations than

those that are compatible with the string yj−1
j−k. Therefore, such a refinement

would cause a more modest growth of the lattice.

Suppose i[d] = 〈t1, t4, t7, t9〉 and d a derivation from the proposal in

Figure 6.10, besides, y[d] = 〈d, b, a, x〉. Let us assume that bax motivates

a refinement, that is, w3(x|ba) < w2(x|a). The automaton in Figure 6.13
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illustrates a refinement that down-weights derivations compatible with the

language t4t7Σ, that is, all 1-triple continuations of t4t7. In the figure, ti ∈ Σ

is a triple. Transitions from q2 to q0 carry a weight αi = w3(yi|ba)
w2(yi|a)

, where

yi = y[ti] and ba = y[t4]y[t5].

else

t4

t4

t1/α1

· · ·

tn/αn

else

t4 t7q1

q0 q2

Figure 6.13: Down-weighting t4t7Σ

In this case, the bookkeeping is done in terms of the vocabulary of triples,

rather than the vocabulary of target words. In comparison to what was done

for hierarchical models, the first strategy, based on n-grams of target words,

is similar to refining on terminal types, while the second strategy, based on

n-grams of triples, is similar to refining on terminal instances (see Section

5.3.2).

Finally, edge marginals can be used to group triples that yield the same

target word on the basis of how likely they are to participate in a deriva-

tion sampled or optimised from the current proposal distribution. This is a

straightforward application of what was developed for hierarchical models in

terms of selective intersection (see Section 5.3.2). Using the Inside-Outside

algorithm we can compute the marginal weight M[e] of each edge e ∈ E in

the lattice. Let Et = {e ∈ E : i[e] = t} be the set of edges that are la-

belled with a given triple t. The total weight that the lattice gives to a triple

t is given by M[t] =
∑

e∈Et M[e], where by abuse of language we call M[t]

the marginal weight of a triple. For a certain refinement that reweights the
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language ΣbΣaΣ, such as exemplified earlier, we can select a subset of ΣbΣa

according to how much weight the lattice gives to triples in Σb and Σa.

6.4.2 Adding constraints

A constraint is typically designed as an unweighted deterministic automaton

A(t) that recognises a language specifying overlapping triples. For example,

Σ∗XiΣ
∗XiΣ

∗ is the language that recognises all strings of triples that overlap

at position i. In such cases, it is necessary to remove derivations from q(t−1)

that are accepted by A(t).

The difference q(t−1) −A(t) can be performed in terms of the intersection

q(t−1) ∩ Ā(t) where Ā(t) is the automaton that accepts the complement of the

language L(A(t)). Complementation is a simple operation done in time linear

with the size of A(t). For epsilon-free automata of the kind we use, it requires

two simple steps (Mohri, 2009):

completion A(t) must be made complete, that is, it must accept Σ∗.

1. make a copy of A(t) and call it Ā(t);

2. augment it with an additional state q′ with self-loops labelled with

all symbols in Σ;

3. for every state q originally in A(t), add transitions of the kind

q
t−→ q′ for all symbols t ∈ Σ that are not yet associated with a

transition from q.

complementation the final states of Ā(t) are made non-final and vice-versa

(q′ is therefore made final). Finally, all weights are set to 1̄ so that

q(t−1) ∩ Ā(t) does not alter the weight of derivations incompatible with

A(t).
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6.5 Conditioning context

At the time G′(x) is created, one can easily store the set B of all target bi-

grams that participate in derivations in G′(x). The logic in Figure 6.7 proves

this point, however, in the context of integrating an optimistic bigram LM

component. This set B can be given to Algorithm 10, prior to intersection

with A(0), to further tighten the LM upperbound distribution (see Section

4.2.2.2). The intuition is that we know the specific 1-word contexts in which

a target word z may be yielded by a derivation in G′(x). This information

limits the possible context histories in the computation of the LM upper-

bound distribution resulting in a smaller gap between q(0) and p. Integrating

this tighter 2-gram LM component does not require an explicit intersection,

neither it requires the explicit instantiation of A(0). Instead, we can update

the weight of each transition in the relaxed lattice in time proportional to

the number of transitions in G′(x). The resulting automaton is equivalent to

q(0) produced by the program in Section 6.3. The same can be done for the

other relaxations discussed in Section 6.2.1.

6.6 Experiments

For the experiments reported in this section we used the French-English

portion of the 6th version of the Europarl collection (Koehn, 2005). In all ex-

periments, we used the Moses toolkit (Koehn et al., 2007) to extract a phrase

table following Koehn et al. (2003).16 Language models were trained by lm-

plz (Heafield et al., 2013) using the English monolingual data made available

by the WMT (Callison-Burch et al., 2012). That is, Europarl, newscom-

mentaries and news-2012. The models extracted from different monolingual

corpora were combined via interpolation using newstest2010 as the devel-

opment set. In all experiments, parameter estimation was performed via

16We extracted phrase-tables containing at most 10 translations per source phrase.

177



6.6. EXPERIMENTS

0 5 10 15 20
Input length

0

100

200

300

400

500

Ti
m

e 
(s

)

Time to build the translation lattice

Complete
monotonic
d=1
d=2
d=3
d=4

Figure 6.14: Time to build a translation lattice G(x) that encodes all of the
non-overlapping constraints

MERT on the newstest2010 development set using single reference BLEU

as the oracle. Finally, from the newstest2011 test set, we selected sentences

randomly according to their length. We sampled 20 examples for each class

of length from 1 to 30 words.

Let us start by considering the time necessary to build a translation lattice

G(x) that includes all of the non-overlapping constraints. That is, without

any form of relaxation. Figure 6.14 shows the average time in seconds as

a function of the input length. In the figure, we compare different types

of lattices. A complete lattice with no limit on distortion (reordering) is

represented by the curve marked with circles. The curve marked with an

up triangle represents monotonic translation. The remaining curves repre-

sent non-monotonic translation up to a maximum distortion limit d from 1

to 4. The number of non-overlapping constraints grows exponentially with
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Figure 6.15: Time necessary to build a relaxed translation lattice as a func-
tion of the input length for different types of relaxation.

the length of the input, hence, the steep curves in Figure 6.14 (except for

monotonic translation).

We can make use of the relaxations discussed in Section 6.2.1 to lower

the complexity of building the translation lattice. Figure 6.15 compares

different strategies in terms of their average running times (also shown in

Figure 6.16 using logarithmic axes). As expected, relaxing the lattices leads

to more reasonable running times even though we operate with no limits in

reordering. Comparing the different relaxations, we see that incorporating

additional constraints upfront requires longer running times. However, as

discussed in Section 6.2.1, the increase is polynomial with the input length

rather than exponential. The more constrained lattices (TS and TWS) are

also bigger, as Figure 6.17 shows.

It turns out that the cheap computation of the relaxed translation lattices
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Figure 6.16: Time to build a relaxed lattice. Both axes are shown in loga-
rithmic scale to simplify analysis of complexity.

comes at a high cost. Most of the search effort necessary for convergence to

an optimum or to a minimum acceptance rate level after that will be fo-

cused on removing invalid derivations from the lattice. That is, most of the

samples (in either modes of OS∗) are invalid due to overlapping derivations.

In the absence of valid samples OS∗ cannot gather evidence to support LM

refinements, which means that the algorithm has to spend a lot of time con-

straining the lattice. To illustrate how severe this problem is, consider the

curves in Figure 6.18. They show the number of refinements of the type Ōi

necessary to achieve a minimum of 10% valid (non-overlapping) derivations

in a sample of 10 thousand derivations drawn from the proposal. Recall that

a refinement of this type remove all derivations overlapping at position i.

It is implicitly equivalent to incorporating one extra bit of information to

every state in the lattice, hence, it multiplies the size of the lattice by two on
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Figure 6.17: Initial size of translation lattices produced by different algo-
rithms

average. After each refinement, we extract a new batch of samples and re-

evaluate the rate of valid derivations. Note that this rate is an upperbound to

the acceptance rate, since invalid samples are automatically rejected. Figure

6.18 shows that to achieve at least 10% of valid derivations using Ōi refine-

ments, we need to completely prevent overlaps at most of the positions (all

but 2 on average). This means we have to start close to a complete lattice,

which is impracticable for long sentences in the absence of a distortion limit.
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Figure 6.18: Number of Ōi refinements necessary to achieve at least 10%
of valid derivations in a sample of 1 thousand derivations drawn from the
proposal
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Figure 6.19: Size of proposal lattices constrained up to a 90% OV rate
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Figure 6.20: Progress of the OV rate as a function of the number of Ōi

refinements upon a proposal initially built with the algorithm TB
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Figure 6.21: Progress of the OV rate as a function of the number of Ōi

refinements upon a proposal initially built with the algorithm TS
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Figure 6.22: Progress of the OV rate as a function of the number of Ōi

refinements upon a proposal initially built with the algorithm TWS

Figures 6.20, 6.21 and 6.22 detail the rate of invalid derivations (OV rate)

from proposals built using TB, TS and TWS, respectively. We can see that

it takes many constraints before the OV rate starts dropping. It is impor-

tant to highlight that refinements of the type Ōi cannot distinguish triples

according to how likely they are. Therefore, they might still be wasteful in

that less aggressive operations could be applied to most of the input posi-

tions without implying an exponential growth of the lattice. Finally, Figure

6.19 shows the final size of the lattice after the OV rate is dropped below

90% (i.e. after the upperbound on the acceptance rate is equal or superior

to 10%).

To confirm whether or not Ōi is wasteful, at least two strategies are possi-

ble. One would be to remove invalid paths as they are optimised or sampled

from the proposal. However, this turns out to be too time-inefficient. The

algorithm spends too many iterations removing invalid paths one by one

instead of progressing with LM refinements. Another strategy relies on sam-
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Figure 6.23: Number of LM refinements before convergence to the true opti-
mum with a 3-gram LM. The initial proposals are not relaxed with respect to
the non-overlapping constraints, that is, they do not contain invalid deriva-
tions.

pling to produce a summary of the distribution from which we gather more

information about overlapping triples. We perform sampling with respect to

L1 identifying from each batch of samples the pairs of triples that overlap

the most. We then design an operation to remove all derivations overlapping

due to those triples. This strategy is applied iteratively until the OV rate is

lowered below 90%. It turns out that this strategy is not fast enough, neither

it produces smaller automata than Ōi refinements do. To explore to which

extent the growth of the automata is due to the incorporation of constraints

in regions of the lattice with low probability, we also performed sampling

relative to Lα with α ∈ [1, 10]. The intuition in trying larger values of α is to

gather more samples from regions of the distribution with more probability

mass. Once more, the procedure was not faster, neither more economic than
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Figure 6.24: Time necessary to refine a fully-constrained lattice up to con-
vergence to the true optimum with a 3-gram LM.

Ōi, confirming that there are too many invalid paths which score highly. In

face of this inefficiency, in the following, we show the performance of OS∗

only with respect to LM refinements. To do that, we have to start from

fully-constrained proposals.

We start by inspecting the efficiency of OS∗ with respect to LM refine-

ments in optimisation mode. Figure 6.23 shows the number of refinements

on top of the fully-constrained lattices shown in Figure 6.14. It is very en-

couraging to see that the number of refinements appear to grow linearly with

the length of the input. Moreover, allowing wider reordering does not seem

to change this dependency. The conclusions are similar with respect to time

efficiency, shown in Figure 6.24. In Figure 6.25, the axes are converted to a

logarithm scale (a loglog plot) to simplify the analysis of the complexity.

At all times during the search, provided that we have obtained at least
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Figure 6.25: Time necessary to refine a fully-constrained lattice up to con-
vergence to the true optimum with a 3-gram LM. Both axes are shown in
logarithmic scale to illustrate how the distortion limit does not increase the
dependency of the decoding time on input length.

one valid derivation, we have a lowerbound on the score of the true optimum

(d∗). If we think about all the valid derivations optimised from q at any

given moment, there will be one that has the best score so far according

to p. Let us denote that derivation by d′. Because q is an upperbound to

p, we know that the score of the true optimum derivation must lie between

p(d′) (the true score of the best derivation found thus far) and maxd q(d) (the

maximum of q). That is, p(d′) ≤ p(d∗) ≤ maxd q(d). This observation allows

for an error-safe space optimisation of the lattice based on edge marginals.

In a nutshell, the idea is to remove from q edges whose marginal weight

(computed under the max-sum semiring via application of the Inside-Outside

algorithm) is worse than the maxd q(d) by a factor β.17 Our application of

17 Goodman (1998) proposes this pruning strategy in the context of probabilistic parsing.
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Figure 6.26: Number of LM refinements necessary to achieve 15% of accep-
tance rate with a 3-gram LM. The initial proposals are not relaxed with
respect to the non-overlapping constraints, that is, they do not contain in-
valid derivations.

this technique is error-safe because we have an upperbound on how far from

the true optimum we are, this upperbound is given by maxd q(d) − p(d′).

Setting β = maxd q(d)− p(d′) means that we can never prune the optimum

away, therefore the space optimisation will not be prone to search errors. We

reserve the use of this technique to optimisation only, since in sampling we

cannot guarantee exactness if the marginals are not preserved.

The following concerns results with OS∗ running in sampling mode.18

The algorithm has been also presented – either verbatim or slightly modified – under
different names in other works (Sixtus and Ortmanns, 1999; Charniak and Johnson, 2005;
Huang, 2008; Dyer, 2010). Sixtus and Ortmanns (1999) call it forward-backward pruning.
Graehl (2005) calls it relatively-useless pruning. Huang (2008) calls it forest pruning. Dyer
(2010) calls it max-marginal pruning to emphasise the use of the max-sum semiring.

18Currently we use MERT to train the model’s weight vector, which is normalised by
its L1 norm in the Moses implementation. While optimisation is not sensitive to the scale
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Figure 6.27: Time necessary to refine a fully-constrained lattice up to a 15%
acceptance rate with a 3-gram LM.

Figure 6.26 shows the number of refinements and Figure 6.27 shows the

convergence time to achieve 15% of acceptance rate starting from the fully-

constrained lattices shown in Figure 6.14. Again, the number of refinements

appear to grow linearly with the length of the input and allowing wider

reordering does not seem to change this dependency. The time figures for

sampling are slightly worse than in the optimisation case mostly due to the

fact that we cannot apply error-safe pruning. Therefore the lattices are

always growing at every iteration. In future work, we intend to asses our

samplers with respect to appropriate decision rules, such as MBR decoding.

Samples also should lead to better parameter estimation, a direction that is

left for future work.

of the weights, in sampling the scale determines how flat or peaked the distribution is.
(Arun et al., 2010) experiment with scaling MERT-trained weights as to maximise BLEU
on held-out data, as well as with MBR training. A more adequate training algorithm
along similar lines is reserved for future work.
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Figure 6.28: Time necessary to refine a fully-constrained lattice up to a 15%
acceptance rate with a 3-gram LM. Both axes are shown in logarithmic scale
to illustrate how the distortion limit does not increase the dependency on
input length.
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Chapter 7

Conclusions

In SMT, a model of translational equivalences explains all correspondences

between a source and a target language. In hierarchical phrase-based SMT,

translational equivalences are represented by a synchronous context-free gram-

mar. The rules in the grammar compactly encode translation operators in-

cluding long-distance reordering phenomena. In phrase-based SMT, transla-

tional equivalences are represented by a cascade of finite-state transducers.

In such models reordering is arbitrary and typically softly constrained by fea-

tures, rather than hard-coded in the set of transformation rules. A parame-

terisation of the model defines an unnormalised distribution over translation

derivations. This is the goal distribution over which we wish to perform

inference.

The parameterisation is typically defined in terms of a log-linear combi-

nation of features that independently capture different aspects of the quality

of the bilingual correspondences and a language model component which

captures the well-formedness of the translation. On the one hand, the bilin-

gual correspondences are typically assessed by features that are local to each

step in a derivation (e.g. deciding on the translation of a phrase). On the

other hand, the language model component is a form of nonlocal param-

eterisation which depends on the interaction between multiple steps in a

derivation. Nonlocal parameterisation violates structural independence as-

sumptions complicating the underlying distribution which in turn means that

a fully parameterised model is typically intractable even for short sentences
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with a bigram language model.

In a more abstract way, the space of translation derivations of a certain

input text can be seen as the intersection between a locally parameterised

translation hypergraph and the target language model distribution. The

translation hypergraph compactly represents the space of weighted trans-

lation derivations compatible with the input under the model of transla-

tional equivalences. The intersection with the language model effectively

re-scores these derivations accounting for target language fluency. In hier-

archical SMT, the translation hypergraph is a tractable and acyclic wCFG,

also referred to as a translation forest. In phrase-based SMT, the transla-

tion hypergraph is a generally intractable and acyclic wFST, also referred to

as a translation lattice. However, under the condition of hard limits in re-

ordering, this translation lattice can be made tractable. The target language

model typically assumes an nth order conditional independence assumption

and because of that it can be represented as a recursive wFSA whose size is

exponential with the order of the language model.

Inference in SMT is typically done in terms of optimisation. That is, one

typically searches for the highest-scoring translation derivation under the

fully parameterised model, a task known as decoding. Due to the complexity

of the underlying search space, decoding is typically done with algorithms

that heuristically approximate the space defined by the intersection between

the translation hypergraph and the target language model. Beam-search and

cube-pruning are examples of such approximations. They construct only part

of the space of translation derivations guided by heuristics that attempt to

predict high-scoring derivations while low-scoring ones are pruned. They

have been shown to scale well to long sentences and to produce translations

of reasonable accuracy. However, they lack formal guarantees and they do

not support sampling.

This thesis focused on the problem of performing exact inference in terms
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of sampling and optimisation in phrase-based and hierarchical phrase-based

SMT. Our approach is based on lowering the complexity associated with the

incorporation of nonlocal parameterisation. More specifically, lowering the

computational complexity of the intersection between the translation hyper-

graph and the target language model. To achieve that we employ the OS∗

algorithm which unifies optimisation and sampling in a single framework

based on a cross between adaptive rejection sampling and A∗ optimisation.

In sum, we avoid explicitly computing the complete intersection by instead

computing a sequence of tractable proposal hypergraphs which all upper-

bound the intractable goal distribution. These proposals are simpler hyper-

graphs which “forget” the context of n-grams. We use the OS∗ technique to

refine these hypergraphs by incrementally intersecting longer n-grams on the

basis of evidence of the need to do so. Evidence is gathered by optimising

and sampling directly from these proxy distributions by means of standard

dynamic programming techniques.

The approach we have presented is, to the best of our knowledge, the

first one to address the problem of exact sampling for machine translation

and to do that in a framework that also handles exact optimisation. The

contributions of this thesis included studying the extent to which it is com-

putationally wasteful to fully incorporate nonlocal parameterisation to the

structure of a translation hypergraph. We focused on the incorporation of an

n-gram language model component to illustrate a form of nonlocal parame-

terisation. The language model was an appealing choice due to its importance

towards generating quality translations. In the case of phrase-based SMT we

proposed to formulate the non-overlapping constraint as a form of structural

dependency that complicates the search space and that can be overlooked at

first to be later incorporated on demand.

Let us review the hypotheses of this thesis:

H1 a full intersection with the language model is computationally wasteful;
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H2 explicitly incorporating n-grams and constraints can be done rather lo-

cally in regions of the hypergraph that are associated with high-scoring

(or likely) derivations;

H3 in the context of phrase-based SMT, we can overlook the non-overlapping

constraints at first and introduce them on demand;

H4 rejection sampling can help lower the complexity associated with non-

local parameterisation by effectively sampling from a simpler model

(with more local dependencies) and assessing the samples with a more

complex model (with less local dependencies);

Our experiments show that only a fraction of the language model n-grams

need to be incorporated to the translation hypergraph (both in hierarchical

and in phrase-based SMT) in order to perform exact inference, confirming

H1. Results on selective intersection confirm H2 in the context of incorpo-

rating an n-gram language model component. We have shown that, by in-

tersecting n-grams only with edges whose marginals are the highest-scoring,

we can achieve convergence in fewer iterations taking less time and explicitly

expanding fewer states of the hypergraphs. In the context of phrase-based

SMT, incorporating non-overlapping constraints on demand did not turn out

to be sufficiently efficient. The relaxations to the translation lattice introduce

an exponential number of invalid derivations. We have found that many of

these derivations in fact score highly enough to considerably slow down the

progress of the search. This means H3 is only true for very short sentences

and will not hold in the general case. There has been some evidence in recent

related work that non-overlapping constraints can be dealt with via soft con-

straints in the form of Lagrangian multipliers, a direction which we intend to

pursue in future work. Finally, in the context of sampling, our experiments

show that there is potential in performing rejection sampling with a distri-

bution of lower complexity (e.g. a model which incorporates a 2-gram LM
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component) to obtain exact samples from a distribution of higher complexity

(e.g. a model which incorporates a 4-gram LM component), supporting H4.

We intend to explore this direction in more detail in future work.

We have also shown the importance of tightening our upperbounds on

the LM distribution on the basis of the active vocabulary of the transla-

tion hypergraphs. For that we also introduced efficient algorithms. We also

introduced and tested a variant of the Earley procedure which achieves a

consistent speed up by capitalising on the incremental aspects of the LM

refinements we rely on.

At this point, due to issues with scalability we have been limited to ex-

perimenting with short sentences. Because of that, we have left for future

work a more qualitative analysis of the translations produced by our tech-

nique. While our technique does not make search errors, this improvement

might not directly reflect in improved translation quality unless parameter

estimation is done in the context of our exact optima and unbiased samples.

The current issues with scalability prevent us from performing more suitable

parameter estimation at this point and therefore we have been experimenting

with models trained via MERT using beam-search and cube-pruning.

Finally, the most important conclusion is that nonlocal parameterisation

of the kind of the language model component can be incorporated on de-

mand. This opens up the possibility of working with dynamic programming

in unpruned hypergraphs, therefore achieving exact optimisation and unbi-

ased sampling. Unbiased samples are of great use and have been very little

explored in SMT. Moreover, our framework gives other forms of strong guar-

antees. For instance, in optimisation at all times we know how far from the

optimum we can be in the worst case. In sampling, we have access to an

unbiased estimate of the acceptance rate. These indicators can be used to

better understand the search errors made by popular heuristics and they can

also be used to early stop the search with some measure of the degree of
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approximation we achieved. There are many directions in which we could

improve our methodology and there are other applications that could benefit

from our results. In the following we discuss some of these directions.

Future work

Our approach can be improved in a number of directions, including the fol-

lowing:

Lagrangian relaxation: in the context of phrase-based SMT, we could

use of Lagrangian relaxation to implicitly incorporate non-overlapping con-

straints by penalising popular overlaps on the basis of Lagrangian multipliers.

Incorporating Lagrangian relaxation to our setup would require some modifi-

cations to the general Lagrangian relaxation framework, but it would remain

feasible and compatible with OS∗. In a nutshell, we would need to modify

the proposals to account for a vector of multipliers µ. This vector contains

one multiplier for each position of the input text. We would modify the pro-

posals we optimise and sample from as follows: qµ(d) ≡ q(d) − µv[d]. The

first part q(d) is the standard upperbound introduced in this thesis, namely,

G(x) ∩ A(0). The second part is a penalty on the number of violations of

the non-overlapping constraint. The violations are assessed for each input

position and captured by vi[d] ≡ xi[d]− 1, where i ∈ [1 . . . I] are positions of

the input and xi[d] returns the number of times the ith input word has been

translated in d. Observe that qµ remains an upperbound to p. If d is a valid

derivation, than v[d] = 0 and qµ(d) = q(d). If d is an invalid derivation,

than v[d] 6= 0 and p(d) = −∞ (i.e., p is undefined for invalid derivations).

The component µv[d] can be incorporated directly to the parameterisation

without violating structural independence, that is, they represent a form of

local parameterisation that does not increase the complexity of the transla-

tion lattice. Therefore, the framework would be compatible with both OS∗

optimisation and OS∗ sampling. Some additional modifications to the sub-
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gradient descent algorithm that optimises the Lagrangian multipliers might

also be necessary. The intuition is to implicitly incorporate as many of the

constraints as possible via adjusting the multipliers. Only then, if it is still

necessary to lower a gap in optimisation, or if the acceptance rate stopped

improving below the desired level due to a high rate of invalid derivation, we

resort to refinements that explicitly constrain the lattice.

General speed-ups: we could make use of error-safe pruning based on

edge marginals and the error bound given by OS∗ in our hierarchical decoder.

We also want to investigate similar techniques that would be more compat-

ible with sampling. However, the case of sampling is less straightforward

because we have to make sure the marginals are consistent with the goal

distribution. Moreover, if we start pruning edges we will loose guarantees.

Another potentially important speed-up is to reimplement some heavily iter-

ative procedures (e.g. intersection) in a programming language such as C++.

Our current prototype is implemented in python (an interpreted language).

Improved upperbounds: our strategies of selective intersection have

parameters that influence convergence speed and depend on various aspects

of the distribution, such as the length of the input, how many refinements

have already been done at a certain point of the search, the order of the

LM refinement, etc. We want to investigate techniques to adaptively change

these parameters in the course of the search based on the progression of the

upperbound. Another direction is to make use of sampling to summarise

the distribution and decide on explicitly incorporating some of the n-grams

upfront starting from a tighter proxy distribution q. We can also optimise

the LM refinements (a small recursive automaton) with respect to how much

they lower the upperbound. Currently, they focus only on the 1-word contin-

uations of a k-gram context. That is, the upperbound weight of substrings

of those n-grams are left unchanged, whereas we could take take the oppor-

tunity to tighten the upperbound distribution further.
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Parameter estimation: once convergence time is improved we can con-

tribute towards performing better parameter estimation. For example, we

can perform minimum risk training using exact samples. Exact samples

should give a much more diverse view that the narrow one given by n-best

list approximations. Another important aspect is that sampling is sensitive

to the scaling of the model parameters, therefore a learning algorithm that

is meant to operate in the framework of sampling becomes important. More-

over, with our method we can have an unbiased estimate of the true parti-

tion function, that is, the L1 norm of the goal distribution, which is essential

for training. This estimate can be seen as the expectation of the partition

function of the tractable proxy distribution with respect to the distribution

r(d) = p(d)
q(d)

. This expectation can be estimated by pointwise approximations

or on the basis of a batch of samples and its value evolves in the course of

the search as q is lowered. Finally, we can compute an upperbound on the

variance of the estimate, which we can also tighten as the search progresses.

Qualitative analysis: once convergence time is improved we can com-

pare exact optimisation, exact sampling and approximate algorithms in terms

of the quality of the translations they produce. We can also explore more

interesting decision rules such as MBR decoding and analyse the impact of

more suitable parameter estimation based on sampling.

Nonlocal parameterisation: we intend to explore the idea of using

OS∗ to achieve a sufficiently efficient proxy q for a model p1 and then use

that proxy as an upperbound to a more complex model p2 with even more

complex nonlocal parameterisation. We could then rely on standard rejection

sampling where p2 is the goal and q is the upperbound. A direct application

of this idea would be to incorporate features that require a complete deriva-

tion to be assessed. One example is a Probabilistic Weighted Context-Free

Grammar (PCFG) LM, that is, a syntax-aware language model distribu-

tion. The intersection between a translation hypergraph and a PCFG LM
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CHAPTER 7. CONCLUSIONS

is a computationally expensive procedure, which is only closed under spe-

cific conditions. However, it might be the case that the PCFG LM would

not drastically change the distribution p, but rather modulate it (“change

it slightly”). If this is the case, we could expect that the decrease in the

acceptance rate of a sampler designed for a standard wFSA LM will be small

enough for rejection sampling to remain feasible with a PCFG LM. Other

features can account for other forms of analysis such as word-sense, topic dis-

tribution, lexical consistency within a document, etc. This framework could

allow the incorporation of features that depend on a much more global con-

text. Intuitively, these features should contribute to finer aspects of quality.
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Translation, pages 10–51, Montréal, Canada. Association for Computa-

tional Linguistics.

Caraballo, S. A. and Charniak, E. (1998). New figures of merit for best-first

probabilistic chart parsing. Comput. Linguist., 24(2):275–298.

Carter, S., Dymetman, M., and Bouchard, G. (2012). Exact Sampling and

Decoding in High-Order Hidden Markov Models. In Proceedings of the

203



BIBLIOGRAPHY

2012 Joint Conference on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learning, pages 1125–1134,

Jeju Island, Korea. Association for Computational Linguistics.

Chang, R. and Hancock, J. (1966). On receiver structures for channels having

memory. IEEE Trans. Inf. Theor., 12(4):463–468.

Chang, Y.-W. and Collins, M. (2011). Exact decoding of phrase-based trans-

lation models through lagrangian relaxation. In Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing, EMNLP

’11, pages 26–37, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and max-

ent discriminative reranking. In Proceedings of the 43rd Annual Meeting

on Association for Computational Linguistics, ACL ’05, pages 173–180,

Stroudsburg, PA, USA. Association for Computational Linguistics.

Chatterjee, S. and Cancedda, N. (2010). Minimum error rate training by

sampling the translation lattice. In Proceedings of the 2010 Conference

on Empirical Methods in Natural Language Processing, EMNLP ’10, pages

606–615, Stroudsburg, PA, USA. Association for Computational Linguis-

tics.

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine

translation. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics, ACL ’05, pages 263–270, Stroudsburg, PA,

USA. Association for Computational Linguistics.

Chiang, D. (2007). Hierarchical phrase-based translation. Computational

Linguistics, 33:201–228.

204



BIBLIOGRAPHY

Chiang, D., Marton, Y., and Resnik, P. (2008). Online large-margin training

of syntactic and structural translation features. In Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing, EMNLP

’08, pages 224–233, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Cocke, J. and Schwartz, J. T. (1969). Programming languages and their

compilers: Preliminary notes. Courant Institute of Mathematical Sciences,

New York University.

Cohen, S. B., Simmons, R. J., and Smith, N. A. (2008). Dynamic program-

ming algorithms as products of weighted logic programs. In Garcia de la

Banda, M. and Pontelli, E., editors, Logic Programming, volume 5366 of

Lecture Notes in Computer Science, pages 114–129. Springer Berlin Hei-

delberg.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Intro-

duction to Algorithms. McGraw-Hill Higher Education, 2nd edition.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale

traveling-salesman problem. Operations Research, 2:393–410.

DeNero, J., Chiang, D., and Knight, K. (2009). Fast consensus decoding

over translation forests. In Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL

’09, pages 567–575, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Dyer, C. (2010). A Formal Model of Ambiguity and its Applications in Ma-

chine Translation. PhD thesis, University of Maryland.

205



BIBLIOGRAPHY

Dyer, C., Muresan, S., and Resnik, P. (2008). Generalizing word lattice

translation. In Proceedings of ACL-08: HLT, pages 1012–1020, Columbus,

Ohio. Association for Computational Linguistics.

Dyer, C. and Resnik, P. (2010). Context-free reordering, finite-state trans-

lation. In Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Lin-

guistics, HLT ’10, pages 858–866, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Dyer, C., Weese, J., Setiawan, H., Lopez, A., Ture, F., Eidelman, V., Gan-

itkevitch, J., Blunsom, P., and Resnik, P. (2010). cdec: a decoder, align-

ment, and learning framework for finite-state and context-free translation

models. In Proceedings of the ACL 2010 System Demonstrations, ACLDe-

mos ’10, pages 7–12, Stroudsburg, PA, USA. Association for Computa-

tional Linguistics.

Dymetman, M. (2013). Procedure for building a max-arpa table in order to

compute optimistic back-offs in a language model.

Dymetman, M., Bouchard, G., and Carter, S. (2012a). Optimization and

sampling for nlp from a unified viewpoint. In Proceedings of the First

International Workshop on Optimization Techniques for Human Language

Technology, pages 79–94, Mumbai, India. The COLING 2012 Organizing

Committee.

Dymetman, M., Bouchard, G., and Carter, S. (2012b). The OS* Algorithm:

a Joint Approach to Exact Optimization and Sampling. ArXiv e-prints.

Earley, J. (1970). An efficient context-free parsing algorithm. Commun.

ACM, 13(2):94–102.

206



BIBLIOGRAPHY

Eisner, J. and Tromble, R. W. (2006). Local search with very large-scale

neighborhoods for optimal permutations in machine translation. In Pro-

ceedings of the HLT-NAACL Workshop on Computationally Hard Prob-

lems and Joint Inference in Speech and Language Processing., pages 57–75,

New York.

Federico, M., Bertoldi, N., and Cettolo, M. (2008). Irstlm: an open source

toolkit for handling large scale language models. In 9th Annual Conference

of the International Speech Communication Association, pages 1618–1621.

ISCA.

Fredkin, E. (1960). Trie memory. Commun. ACM, 3(9):490–499.

Galley, M. and Manning, C. D. (2010). Accurate non-hierarchical phrase-

based translation. In Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for Com-

putational Linguistics, HLT ’10, pages 966–974, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Gallo, G., Longo, G., Pallottino, S., and Nguyen, S. (1993). Directed hyper-

graphs and applications. Discrete Applied Mathematics, 42(2-3):177–201.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D.

(2013). Bayesian Data Analysis. Chapman and Hall/CRC, third edition.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions,

and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach.

Intell., 6(6):721–741.

Germann, U., Jahr, M., Knight, K., Marcu, D., and Yamada, K. (2001). Fast

decoding and optimal decoding for machine translation. In Proceedings of

the 39th Annual Meeting on Association for Computational Linguistics,

207



BIBLIOGRAPHY

ACL ’01, pages 228–235, Stroudsburg, PA, USA. Association for Compu-

tational Linguistics.

Germann, U., Joanis, E., and Larkin, S. (2009). Tightly packed tries: how to

fit large models into memory, and make them load fast, too. In Proceedings

of the Workshop on Software Engineering, Testing, and Quality Assurance

for Natural Language Processing, SETQA-NLP ’09, pages 31–39, Strouds-

burg, PA, USA. Association for Computational Linguistics.

Gispert, A., Iglesias, G., Blackwood, G., R. Banga, E., and Byrne, W. (2010).

Hierarchical phrase-based translation with weighted finite-state transduc-

ers and shallow-n grammars. Comput. Linguist., 36(3):505–533.

Goodman, J. (1999). Semiring parsing. Comput. Linguist., 25(4):573–605.

Goodman, J. T. (1998). Parsing inside-out. PhD thesis, Cambridge, MA,

USA. AAI9832377.

Graehl, J. (2005). Relatively useless pruning. Technical report, USC Infor-

mation Sciences Institute.

Greibach, S. A. (1965). A new normal-form theorem for context-free phrase

structure grammars. J. ACM, 12(1):42–52.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions on

Systems, Science, and Cybernetics, SSC-4(2):100–107.

Heafield, K. (2011). Kenlm: faster and smaller language model queries.

In Proceedings of the Sixth Workshop on Statistical Machine Translation,

WMT ’11, pages 187–197, Stroudsburg, PA, USA. Association for Com-

putational Linguistics.

208



BIBLIOGRAPHY

Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable

modified kneser-ney language model estimation. In Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics (Volume

2: Short Papers), pages 690–696, Sofia, Bulgaria. Association for Compu-

tational Linguistics.

Hopcroft, J. E. and Ullman, J. D. (1969). Formal languages and their relation

to automata. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction To Automata Theory,

Languages, And Computation. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1st edition.

Hopkins, M. and Langmead, G. (2009). Cube pruning as heuristic search.

In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing: Volume 1 - Volume 1, EMNLP ’09, pages 62–71,

Stroudsburg, PA, USA. Association for Computational Linguistics.

Huang, L. (2008). Forest-based algorithms in natural language processing.

PhD thesis, Philadelphia, PA, USA. AAI3346133.

Huang, L. and Chiang, D. (2007). Forest rescoring: Faster decoding with

integrated language models. In Proceedings of the 45th Annual Meeting

of the Association of Computational Linguistics, pages 144–151, Prague,

Czech Republic. Association for Computational Linguistics.

Iglesias, G., Allauzen, C., Byrne, W., de Gispert, A., and Riley, M. (2011).

Hierarchical phrase-based translation representations. In Proceedings of

the 2011 Conference on Empirical Methods in Natural Language Process-

ing, pages 1373–1383, Edinburgh, Scotland, UK. Association for Compu-

tational Linguistics.

209



BIBLIOGRAPHY

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics

and Speech Recognition (Prentice Hall Series in Artificial Intelligence).

Prentice Hall, 1 edition.

Kasami, T. (1965). An efficient recognition and syntax analysis algorithm

for context-free languages. Technical Report AFCRL-65-758, Air Force

Cambridge Research Laboratory, Bedford, MA.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by

simulated annealing. Science, 220(4598):671–680.

Knight, K. (1999). Decoding complexity in word-replacement translation

models. Comput. Linguist., 25(4):607–615.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine trans-

lation. In Tenth Machine Translation Summit, pages 79 – 86.

Koehn, P., Hoang, H., Birch, A., Burch, C. C., Federico, M., Bertoldi, N.,

Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Con-

stantin, A., and Herbst, E. (2007). Moses: Open source toolkit for statis-

tical machine translation. In 45th Annual Meeting of the Association for

Computational Linguistics.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based trans-

lation. In Proceedings of the 2003 Conference of the North American Chap-

ter of the Association for Computational Linguistics on Human Language

Technology - Volume 1, NAACL ’03, pages 48–54, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Kumar, S. and Byrne, W. (2003). A weighted finite state transducer imple-

mentation of the alignment template model for statistical machine transla-

tion. In Proceedings of the 2003 Conference of the North American Chap-

210



BIBLIOGRAPHY

ter of the Association for Computational Linguistics on Human Language

Technology - Volume 1, NAACL ’03, pages 63–70, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Kumar, S. and Byrne, W. (2004). Minimum bayes-risk decoding for sta-

tistical machine translation. In Susan Dumais, D. M. and Roukos, S.,

editors, HLT-NAACL 2004: Main Proceedings, pages 169–176, Boston,

Massachusetts, USA. Association for Computational Linguistics.

Kumar, S., Deng, Y., and Byrne, W. (2006). A weighted finite state trans-

ducer translation template model for statistical machine translation. Nat-

ural Language Engineering, 12(1):35–75.

Kumar, S., Macherey, W., Dyer, C., and Och, F. (2009). Efficient minimum

error rate training and minimum bayes-risk decoding for translation hy-

pergraphs and lattices. In Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP, pages 163–171, Suntec,

Singapore. Association for Computational Linguistics.

Langlais, P., Patry, A., and Gotti, F. (2007). A greedy decoder for phrase-

based statistical machine translation. In 11th International Conference on

Theoretical and Methodological Issues in Machine Translation, TMI, pages

104–113, SkZvde, Sweden,.

Lewis, II, P. M. and Stearns, R. E. (1968). Syntax-directed transduction.

Journal of the ACM, 15(3):465–488.

Li, Z. and Eisner, J. (2009). First- and second-order expectation semirings

with applications to minimum-risk training on translation forests. In Pro-

ceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing: Volume 1 - Volume 1, EMNLP ’09, pages 40–51, Stroudsburg,

PA, USA. Association for Computational Linguistics.

211



BIBLIOGRAPHY

Li, Z., Eisner, J., and Khudanpur, S. (2009). Variational decoding for statisti-

cal machine translation. In Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL

’09, pages 593–601, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Lopez, A. (2008). Statistical machine translation. ACM Computing Surveys,

40:8:1–8:49.

Lopez, A. (2009). Translation as weighted deduction. In Proceedings of the

12th Conference of the European Chapter of the Association for Compu-

tational Linguistics, EACL ’09, pages 532–540, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Marcu, D. and Wong, W. (2002). A phrase-based, joint probability model for

statistical machine translation. In Proceedings of the ACL-02 conference

on Empirical methods in natural language processing - Volume 10, EMNLP

’02, pages 133–139, Stroudsburg, PA, USA. Association for Computational

Linguistics.

May, J. and Knight, K. (2006). A better n-best list: Practical determinization

of weighted finite tree automata. In Proceedings of the Main Conference on

Human Language Technology Conference of the North American Chapter

of the Association of Computational Linguistics, HLT-NAACL ’06, pages

351–358, Stroudsburg, PA, USA. Association for Computational Linguis-

tics.

Melamed, I. D. (2003). Multitext grammars and synchronous parsers. In Pro-

ceedings of the 2003 Conference of the North American Chapter of the As-

sociation for Computational Linguistics on Human Language Technology -

212



BIBLIOGRAPHY

Volume 1, NAACL ’03, pages 79–86, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Mohri, M. (2009). Weighted automata algorithms. In Droste, M., Kuich, W.,

and Vogler, H., editors, Handbook of Weighted Automata, Monographs in

Theoretical Computer Science. An EATCS Series, pages 213–254. Springer

Berlin Heidelberg.

Mohri, M., Pereira, F. C. N., and Riley, M. (1996). Weighted automata in

text and speech processing. In Proceedings of the 12th biennial European

Conference on Artificial Intelligence (ECAI-96), Workshop on Extended

finite state models of language. John Wiley and Sons.

Nederhof, M.-J. and Satta, G. (2008a). Computing partition functions of

pcfgs. Research on Language and Computation, 6(2):139–162.

Nederhof, M.-J. and Satta, G. (2008b). Probabilistic parsing. In Bel-Enguix,
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