307 research outputs found

    Positive Logic with Adjoint Modalities: Proof Theory, Semantics and Reasoning about Information

    Get PDF
    We consider a simple modal logic whose non-modal part has conjunction and disjunction as connectives and whose modalities come in adjoint pairs, but are not in general closure operators. Despite absence of negation and implication, and of axioms corresponding to the characteristic axioms of (e.g.) T, S4 and S5, such logics are useful, as shown in previous work by Baltag, Coecke and the first author, for encoding and reasoning about information and misinformation in multi-agent systems. For such a logic we present an algebraic semantics, using lattices with agent-indexed families of adjoint pairs of operators, and a cut-free sequent calculus. The calculus exploits operators on sequents, in the style of "nested" or "tree-sequent" calculi; cut-admissibility is shown by constructive syntactic methods. The applicability of the logic is illustrated by reasoning about the muddy children puzzle, for which the calculus is augmented with extra rules to express the facts of the muddy children scenario.Comment: This paper is the full version of the article that is to appear in the ENTCS proceedings of the 25th conference on the Mathematical Foundations of Programming Semantics (MFPS), April 2009, University of Oxfor

    A Spatial-Epistemic Logic for Reasoning about Security Protocols

    Full text link
    Reasoning about security properties involves reasoning about where the information of a system is located, and how it evolves over time. While most security analysis techniques need to cope with some notions of information locality and knowledge propagation, usually they do not provide a general language for expressing arbitrary properties involving local knowledge and knowledge transfer. Building on this observation, we introduce a framework for security protocol analysis based on dynamic spatial logic specifications. Our computational model is a variant of existing pi-calculi, while specifications are expressed in a dynamic spatial logic extended with an epistemic operator. We present the syntax and semantics of the model and logic, and discuss the expressiveness of the approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers may be mechanically determined for any deterministic finite protocol, and discuss how this result may be used to reason about security properties of open systems. We also present a model-checking algorithm for our logic, which has been implemented as an extension to the SLMC system.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    Proof theory of epistemic logics

    Get PDF

    A Labelled Sequent Calculus for Public Announcement Logic

    Full text link
    Public announcement logic(PAL) is an extension of epistemic logic (EL) with some reduction axioms. In this paper, we propose a cut-free labelled sequent calculus for PAL, which is an extension of that for EL with sequent rules adapted from the reduction axioms. This calculus admits cut and allows terminating proof search

    Semantically informed methods in structural proof theory

    Get PDF

    Non-normal modalities in variants of Linear Logic

    Get PDF
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of Linear Logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic Linear Logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatization and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the logical framework to use by instantiating it as logics of agency. In particular, we propose a logic to reason about the resource-sensitive use of artefacts and illustrate it with a variety of examples

    Generic Modal Cut Elimination Applied to Conditional Logics

    Full text link
    We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity were explicitly stated as open in the literature
    corecore