7 research outputs found

    VANET-Based Traffic Monitoring and Incident Detection System: A Review

    Get PDF
    As a component of intelligent transport systems (ITS), vehicular ad hoc network (VANET), which is a subform of manet, has been identified. It is established on the roads based on available vehicles and supporting road infrastructure, such as base stations. An accident can be defined as any activity in the environment that may be harmful to human life or dangerous to human life. In terms of early detection, and broadcast delay. VANET has shown various problems. The available technologies for incident detection and the corresponding algorithms for processing. The present problem and challenges of incident detection in VANET technology are discussed in this paper. The paper also reviews the recently proposed methods for early incident techniques and studies them

    Stable Dynamic Predictive Clustering (SDPC) Protocol for Vehicular Ad hoc Network

    Full text link
    Vehicular communication is an essential part of a smart city. Scalability is a major issue for vehicular communication, specially, when the number of vehicles increases at any given point. Vehicles also suffer some other problems such as broadcast problem. Clustering can solve the issues of vehicular ad hoc network (VANET); however, due to the high mobility of the vehicles, clustering in VANET suffers stability issue. Previously proposed clustering algorithms for VANET are optimized for either straight road or for intersection. Moreover, the absence of the intelligent use of a combination of the mobility parameters, such as direction, movement, position, velocity, degree of vehicle, movement at the intersection etc., results in cluster stability issues. A dynamic clustering algorithm considering the efficient use of all the mobility parameters can solve the stability problem in VANET. To achieve higher stability for VANET, a novel robust and dynamic clustering algorithm stable dynamic predictive clustering (SDPC) for VANET is proposed in this paper. In contrast to previous studies, vehicle relative velocity, vehicle position, vehicle distance, transmission range, and vehicle density are considered in the creation of a cluster, whereas relative distance, movement at the intersection, degree of vehicles are considered to select the cluster head. From the mobility parameters the future road scenario is constructed. The cluster is created, and the cluster head is selected based on the future construction of the road. The performance of SDPC is compared in terms of the average cluster head change rate, the average cluster head duration, the average cluster member duration, and the ratio of clustering overhead in terms of total packet transmission. The simulation result shows SDPC outperforms the existing algorithms and achieved better clustering stability

    Simulation framework for connected vehicles: a scoping review [version 2; peer review: 2 approved]

    Get PDF
    Background: V2V (Vehicle-to-Vehicle) is a booming research field with a diverse set of services and applications. Most researchers rely on vehicular simulation tools to model traffic and road conditions and evaluate the performance of network protocols. We conducted a scoping review to consider simulators that have been reported in the literature based on successful implementation of V2V systems, tutorials, documentation, examples, and/or discussion groups. Methods: Simulators that have limited information were not included. The selected simulators are described individually and compared based on their requirements and features, i.e., origin, traffic model, scalability, and traffic features. This scoping review was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The review considered only research published in English (in journals and conference papers) completed after 2015. Further, three reviewers initiated the data extraction phase to retrieve information from the published papers. Results: Most simulators can simulate system behaviour by modelling the events according to pre-defined scenarios. However, the main challenge faced is integrating the three components to simulate a road environment in either microscopic, macroscopic or mesoscopic models. These components include mobility generators, VANET simulators and network simulators. These simulators require the integration and synchronisation of the transportation domain and the communication domain. Simulation modelling can be run using a different types of simulators that are cost-effective and scalable for evaluating the performance of V2V systems in urban environments. In addition, we also considered the ability of the vehicular simulation tools to support wireless sensors. Conclusions: The outcome of this study may reduce the time required for other researchers to work on other applications involving V2V systems and as a reference for the study and development of new traffic simulators

    UAV-assisted data dissemination based on network coding in vehicular networks

    Get PDF
    Efficient and emergency data dissemination service in vehicular networks (VN) is very important in some situations, such as earthquakes, maritime rescue, and serious traffic accidents. Data loss frequently occurs in the data transition due to the unreliability of the wireless channel and there are no enough available UAVs providing data dissemination service for the large disaster areas. UAV with an adjustable active antenna can be used in light of the situation. However, data dissemination assisted by UAV with the adjustable active antenna needs corresponding effective data dissemination framework. A UAV-assisted data dissemination method based on network coding is proposed. First, the graph theory to model the state of the data loss of the vehicles is used; the data dissemination problem is transformed as the maximum clique problem of the graph. With the coverage of the directional antenna being limited, a parallel method to find the maximum clique based on the region division is proposed. Lastly, the method\u27s effectiveness is demonstrated by the simulation; the results show that the solution proposed can accelerate the solving process of finding the maximum clique and reduce the number of UAV broadcasts. This manuscript designs a novel scheme for the UAV-assisted data dissemination in vehicular networks based on network coding. The graph theory is used to model the state of the data loss of the vehicles. With the coverage of the directional antenna being limited, then a parallel method is proposed to find the maximum clique of the graph based on the region division. The effectiveness of the method is demonstrated by the simulation

    Enhanced stability of cluster-based location service mechanism for urban vehicular ad hoc networks

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are gaining tremendous research interest in developing an Intelligent Transportation System (ITS) for smart cities. The position of vehicles plays a significant role in ITS applications and services such as public emergency, vehicles tracking, resource discovery, traffic monitoring and position-based routing. The location service is used to keep up-to-date records of current positions of vehicles. A review of previous literatures, found various locationbased service mechanisms have been proposed to manage the position of vehicles. The cluster-based location service mechanisms have achieved growing attention due to their advantages such as scalability, reliability and reduced communication overhead. However, the performance of the cluster-based location service mechanism depends on the stability of the cluster, and the stability of the cluster depends on the stability of the Cluster Head (CH), Cluster Member (CM) and cluster maintenance. In the existing cluster-based location service schemes, the issue of CH instability arises due to the non-optimal cluster formation range and unreliable communication link with Road Side Unit (RSU). The non-optimal cluster formation range causes CH instability due to lack of uniqueness of Centroid Vehicle (CV), uncertainty of participating vehicles in the CH election process and unreliability of the Cluster Head Election Value (CHEV). Also, the unreliable link with RSU does not guarantee that CH is stable with respect to its CMs and RSU simultaneously. The issue of CM instability in the existing cluster-based location service schemes occurs due to using instantaneous speed of the CH and fixed CM affiliation threshold values. The instantaneous speed causes the CM to switch the clusters frequently and fixed CM affiliation threshold values increase isolated vehicles. The frequent switching of isolated vehicles augment the CM instability. Moreover, the inefficient cluster maintenance due to non-optimal cluster merging and cluster splitting also contributes to cluster instability. The merging conditions such as fixed merging threshold time and uncertain movement of overlapping CHs within merging threshold time cause the cluster instability. Furthermore, the unnecessary clustering during cluster splitting around the intersection due to CH election parameters also increases cluster instability. Therefore, to address the aforementioned cluster instability issues, Enhanced Stability of Cluster-based Location Service (ESCLS) mechanism was proposed for urban VANETs. The proposed ESCLS mechanism consists of three complementary schemes which are Reliable Cluster Head Election (RCHE), Dynamic Cumulative Cluster Member Affiliation (DCCMA) and Optimized Cluster Maintenance (OCM). Firstly, the aim of the RCHE scheme was to enhance the stability of the CH through optimizing the cluster formation range and by considering communication link reliability with the RSU. Secondly, the DCCMA scheme focussed on improving the stability of the CMs by considering the Cumulative Moving Average Speed (CMAS) of the CH and dynamic CM affiliation threshold values, and finally, the OCM scheme enhanced the cluster stability by improving cluster merging conditions and reducing unnecessary clustering in cluster splitting. The results of the simulation verified the improved performance of the ESCLS in terms of increasing the location query success rate by 34%, and decreasing the query response delay and localization error by 24% and 35% respectively as compared to the existing cluster-based location service schemes such as HCBLS, CBLS and MoGLS. In conclusion, it is proven that ESCLS is a suitable location service mechanism for a wide range of position-based applications of VANETs that require timely and accurate vehicle locations

    Stable dynamic feedback-based predictive clustering protocol for vehicular ad hoc networks

    Get PDF
    Scalability presents a significant challenge in vehicular communication, particularly when there is no hierarchical structure in place to manage the increasing number of vehicles. As the number of vehicles increases, they may encounter the broadcast storm problem, which can cause network congestion and reduce communication efficiency. Clustering can solve these issues, but due to high vehicle mobility, clustering in vehicular ad hoc networks (VANET) suffers from stability issues. Existing clustering algorithms are optimized for either cluster head or member, and for highways or intersections. The lack of intelligent use of mobility parameters like velocity, acceleration, direction, position, distance, degree of vehicles, and movement at intersections, also contributes to cluster stability problems. A dynamic clustering algorithm that efficiently utilizes all mobility parameters can resolve these issues in VANETs. To provide higher stability in VANET clustering, a novel robust and dynamic mobility-based clustering algorithm called junction-based clustering protocol for VANET (JCV) is proposed in this dissertation. Unlike previous studies, JCV takes into account position, distance, movement at the junction, degree of a vehicle, and time spent on the road to select the cluster head (CH). JCV considers transmission range, the moving direction of the vehicle at the next junction, and vehicle density in the creation of a cluster. JCV's performance is compared with two existing VANET clustering protocols in terms of the average cluster head duration, the average cluster member (CM) duration, the average number of cluster head changes, and the percentage of vehicles participating in the clustering process, etc. To evaluate the performance of JCV, we developed a new cloud-based VANET simulator (CVANETSIM). The simulation results show that JCV outperforms the existing algorithms and achieves better stability in terms of the average CH duration (4%), the average CM duration (8%), the number of CM (6%), the ratio of CM (22%), the average CH change rate (14%), the number of CH (10%), the number of non-cluster vehicles (7%), and clustering overhead (35%). The dissertation also introduced a stable dynamic feedback-based predictive clustering (SDPC) protocol for VANET, which ensures cluster stability in both highway and intersection scenarios, irrespective of the road topology. SDPC considers vehicle relative velocity, acceleration, position, distance, transmission range, moving direction at the intersection, and vehicle density to create a cluster. The cluster head is selected based on the future construction of the road, considering relative distance, movement at the intersection, degree of vehicles, majority-vehicle, and probable cluster head duration. The performance of SDPC is compared with four existing VANET clustering algorithms in various road topologies, in terms of the average cluster head change rate, duration of the cluster head, duration of the cluster member, and the clustering overhead. The simulation results show that SDPC outperforms existing algorithms, achieving better clustering stability in terms of the average CH change rate (50%), the average CH duration (15%), the average CM duration (6%), and the clustering overhead (35%)
    corecore