4 research outputs found

    A Multi-Label Machine Learning Approach to Support Pathologist\u27s Histological Analysis

    Get PDF
    This paper proposes a new tool in the field of telemedicine, defined as a specific branch where IT supports medicine, in case distance impairs the proper care to be delivered to a patient. All the information contained into medical texts, if properly extracted, may be suitable for searching, classification, or statistical analysis. For this reason, in order to reduce errors and improve quality control, a proper information extraction tool may be useful. In this direction, this work presents a Machine Learning Multi-Label approach for the classification of the information extracted from the pathology reports into relevant categories. The aim is to integrate automatic classifiers to improve the current workflow of medical experts, by defining a Multi-Label approach, able to consider all the features of a model, together with their relationships. This work is licensed under a&nbsp;Creative Commons Attribution-NonCommercial 4.0 International License.</p

    Coupled node similarity learning for community detection in attributed networks

    Full text link
    © 2018 by the authors. Attributed networks consist of not only a network structure but also node attributes. Most existing community detection algorithms only focus on network structures and ignore node attributes, which are also important. Although some algorithms using both node attributes and network structure information have been proposed in recent years, the complex hierarchical coupling relationships within and between attributes, nodes and network structure have not been considered. Such hierarchical couplings are driving factors in community formation. This paper introduces a novel coupled node similarity (CNS) to involve and learn attribute and structure couplings and compute the similarity within and between nodes with categorical attributes in a network. CNS learns and integrates the frequency-based intra-attribute coupled similarity within an attribute, the co-occurrence-based inter-attribute coupled similarity between attributes, and coupled attribute-to-structure similarity based on the homophily property. CNS is then used to generate the weights of edges and transfer a plain graph to a weighted graph. Clustering algorithms detect community structures that are topologically well-connected and semantically coherent on the weighted graphs. Extensive experiments verify the effectiveness of CNS-based community detection algorithms on several data sets by comparing with the state-of-the-art node similarity measures, whether they involve node attribute information and hierarchical interactions, and on various levels of network structure complexity

    Information Theory and Machine Learning

    Get PDF
    The recent successes of machine learning, especially regarding systems based on deep neural networks, have encouraged further research activities and raised a new set of challenges in understanding and designing complex machine learning algorithms. New applications require learning algorithms to be distributed, have transferable learning results, use computation resources efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of developments in statistical learning theory and information theory has set out to address these challenges. This Special Issue, "Machine Learning and Information Theory", aims to collect recent results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional theories and develop analysis tools for these complex machine learning systems

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p
    corecore