17 research outputs found

    A correlation clustering approach to link classification in signed networks

    Get PDF
    Motivated by social balance theory, we develop a theory of link classification in signed networks using the correlation clustering index as measure of label regularity. We derive learning bounds in terms of correlation clustering within three fundamental transductive learning settings: online, batch and active. Our main algorithmic contribution is in the active setting, where we introduce a new family of efficient link classifiers based on covering the input graph with small circuits. These are the first active algorithms for link classification with mistake bounds that hold for arbitrary signed networks

    On the Troll-Trust Model for Edge Sign Prediction in Social Networks

    Get PDF
    In the problem of edge sign prediction, we are given a directed graph (representing a social network), and our task is to predict the binary labels of the edges (i.e., the positive or negative nature of the social relationships). Many successful heuristics for this problem are based on the troll-trust features, estimating at each node the fraction of outgoing and incoming positive/negative edges. We show that these heuristics can be understood, and rigorously analyzed, as approximators to the Bayes optimal classifier for a simple probabilistic model of the edge labels. We then show that the maximum likelihood estimator for this model approximately corresponds to the predictions of a Label Propagation algorithm run on a transformed version of the original social graph. Extensive experiments on a number of real-world datasets show that this algorithm is competitive against state-of-the-art classifiers in terms of both accuracy and scalability. Finally, we show that troll-trust features can also be used to derive online learning algorithms which have theoretical guarantees even when edges are adversarially labeled.Comment: v5: accepted to AISTATS 201

    Correlation Clustering with Adaptive Similarity Queries

    Get PDF
    In correlation clustering, we are givennobjects together with a binary similarityscore between each pair of them. The goal is to partition the objects into clustersso to minimise the disagreements with the scores. In this work we investigatecorrelation clustering as an active learning problem: each similarity score can belearned by making a query, and the goal is to minimise both the disagreementsand the total number of queries. On the one hand, we describe simple activelearning algorithms, which provably achieve an almost optimal trade-off whilegiving cluster recovery guarantees, and we test them on different datasets. On theother hand, we prove information-theoretical bounds on the number of queriesnecessary to guarantee a prescribed disagreement bound. These results give a richcharacterization of the trade-off between queries and clustering error

    Correlation Clustering with Adaptive Similarity Queries

    Get PDF
    In correlation clustering, we are given nn objects together with a binary similarity score between each pair of them. The goal is to partition the objects into clusters so to minimise the disagreements with the scores. In this work we investigate correlation clustering as an active learning problem: each similarity score can be learned by making a query, and the goal is to minimise both the disagreements and the total number of queries. On the one hand, we describe simple active learning algorithms, which provably achieve an almost optimal trade-off while giving cluster recovery guarantees, and we test them on different datasets. On the other hand, we prove information-theoretical bounds on the number of queries necessary to guarantee a prescribed disagreement bound. These results give a rich characterization of the trade-off between queries and clustering error
    corecore