854 research outputs found

    Writer\u2019s uncertainty identification in scientific biomedical articles: a tool for automatic if-clause tagging

    Get PDF
    In a previous study, we manually identified seven categories (verbs, non- verbs, modal verbs in the simple present, modal verbs in the conditional mood, if, uncertain questions, and epistemic future) of Uncertainty Markers (UMs) in a corpus of 80 articles from the British Medical Journal randomly sampled from a 167-year period (1840\u20132007). The UMs detected on the base of an epistemic stance approach were those referring only to the authors of the articles and only in the present. We also performed preliminary experiments to assess the manual annotated corpus and to establish a baseline for the UMs automatic detection. The results of the experiments showed that most UMs could be recognized with good accuracy, except for the if-category, which includes four subcategories: if-clauses in a narrow sense; if-less clauses; as if/as though; if and whether introducing embedded questions. The unsatisfactory results concerning the if-category were probably due to both its complexity and the inadequacy of the detection rules, which were only lexical, not grammatical. In the current article, we describe a different approach, which combines grammatical and syntactic rules. The performed experiments show that the identification of uncertainty in the if-category has been largely double improved compared to our previous results. The complex overall process of uncertainty detection can greatly profit from a hybrid approach which should combine supervised Machine learning techniques with a knowledge-based approach constituted by a rule-based inference engine devoted to the if-clause case and designed on the basis of the above mentioned epistemic stance approach

    Self-mention and uncertain communication in the British Medical Journal (1840\u20132007): The decrease of subjectivity uncertainty markers

    Get PDF
    The communication of a scientific finding as certain or uncertain largely determines whether that information will be translated into practice. In this study, a corpus of 80 articles published in the British Medical Journal for over 167 years (1840\u20132007) is analysed by focusing on three categories of uncertainty markers, which explicitly reveal a writer\u2019s subjectivity: (1) I/we epistemic verbs; (2) I/we modal verbs; and (3) epistemic non-verbs conveying personal opinions. The quantitative analysis shows their progressive decrease over time, which can be due to several variables, including the evolution of medical knowledge and practice, changes in medical research and within the scientific community, and more stringent guidelines for the scientific writing (regarding types of articles, their structure and rhetorical style)

    Novel Event Detection and Classification for Historical Texts

    Get PDF
    Event processing is an active area of research in the Natural Language Processing community but resources and automatic systems developed so far have mainly addressed contemporary texts. However, the recognition and elaboration of events is a crucial step when dealing with historical texts particularly in the current era of massive digitization of historical sources: research in this domain can lead to the development of methodologies and tools that can assist historians in enhancing their work, while having an impact also on the field of Natural Language Processing. Our work aims at shedding light on the complex concept of events when dealing with historical texts. More specifically, we introduce new annotation guidelines for event mentions and types, categorised into 22 classes. Then, we annotate a historical corpus accordingly, and compare two approaches for automatic event detection and classification following this novel scheme. We believe that this work can foster research in a field of inquiry so far underestimated in the area of Temporal Information Processing. To this end, we release new annotation guidelines, a corpus and new models for automatic annotation

    Foreword

    Get PDF
    The aim of this Workshop is to focus on building and evaluating resources used to facilitate biomedical text mining, including their design, update, delivery, quality assessment, evaluation and dissemination. Key resources of interest are lexical and knowledge repositories (controlled vocabularies, terminologies, thesauri, ontologies) and annotated corpora, including both task-specific resources and repositories reengineered from biomedical or general language resources. Of particular interest is the process of building annotated resources, including designing guidelines and annotation schemas (aiming at both syntactic and semantic interoperability) and relying on language engineering standards. Challenging aspects are updates and evolution management of resources, as well as their documentation, dissemination and evaluation

    Mining arguments in scientific abstracts: Application to argumentative quality assessment

    Get PDF
    Argument mining consists in the automatic identification of argumentative structures in natural language, a task that has been recognized as particularly challenging in the scientific domain. In this work we propose SciARG, a new annotation scheme, and apply it to the identification of argumentative units and relations in abstracts in two scientific disciplines: computational linguistics and biomedicine, which allows us to assess the applicability of our scheme to different knowledge fields. We use our annotated corpus to train and evaluate argument mining models in various experimental settings, including single and multi-task learning. We investigate the possibility of leveraging existing annotations, including discourse relations and rhetorical roles of sentences, to improve the performance of argument mining models. In particular, we explore the potential offered by a sequential transfer- learning approach in which supplementary training tasks are used to fine-tune pre-trained parameter-rich language models. Finally, we analyze the practical usability of the automatically-extracted components and relations for the prediction of argumentative quality dimensions of scientific abstracts.Agencia Nacional de Investigación e InnovaciónMinisterio de Economía, Industria y Competitividad (España

    Information Extraction from Text for Improving Research on Small Molecules and Histone Modifications

    Get PDF
    The cumulative number of publications, in particular in the life sciences, requires efficient methods for the automated extraction of information and semantic information retrieval. The recognition and identification of information-carrying units in text – concept denominations and named entities – relevant to a certain domain is a fundamental step. The focus of this thesis lies on the recognition of chemical entities and the new biological named entity type histone modifications, which are both important in the field of drug discovery. As the emergence of new research fields as well as the discovery and generation of novel entities goes along with the coinage of new terms, the perpetual adaptation of respective named entity recognition approaches to new domains is an important step for information extraction. Two methodologies have been investigated in this concern: the state-of-the-art machine learning method, Conditional Random Fields (CRF), and an approximate string search method based on dictionaries. Recognition methods that rely on dictionaries are strongly dependent on the availability of entity terminology collections as well as on its quality. In the case of chemical entities the terminology is distributed over more than 7 publicly available data sources. The join of entries and accompanied terminology from selected resources enables the generation of a new dictionary comprising chemical named entities. Combined with the automatic processing of respective terminology – the dictionary curation – the recognition performance reached an F1 measure of 0.54. That is an improvement by 29 % in comparison to the raw dictionary. The highest recall was achieved for the class of TRIVIAL-names with 0.79. The recognition and identification of chemical named entities provides a prerequisite for the extraction of related pharmacological relevant information from literature data. Therefore, lexico-syntactic patterns were defined that support the automated extraction of hypernymic phrases comprising pharmacological function terminology related to chemical compounds. It was shown that 29-50 % of the automatically extracted terms can be proposed for novel functional annotation of chemical entities provided by the reference database DrugBank. Furthermore, they are a basis for building up concept hierarchies and ontologies or for extending existing ones. Successively, the pharmacological function and biological activity concepts obtained from text were included into a novel descriptor for chemical compounds. Its successful application for the prediction of pharmacological function of molecules and the extension of chemical classification schemes, such as the the Anatomical Therapeutic Chemical (ATC), is demonstrated. In contrast to chemical entities, no comprehensive terminology resource has been available for histone modifications. Thus, histone modification concept terminology was primary recognized in text via CRFs with a F1 measure of 0.86. Subsequent, linguistic variants of extracted histone modification terms were mapped to standard representations that were organized into a newly assembled histone modification hierarchy. The mapping was accomplished by a novel developed term mapping approach described in the thesis. The combination of term recognition and term variant resolution builds up a new procedure for the assembly of novel terminology collections. It supports the generation of a term list that is applicable in dictionary-based methods. For the recognition of histone modification in text it could be shown that the named entity recognition method based on dictionaries is superior to the used machine learning approach. In conclusion, the present thesis provides techniques which enable an enhanced utilization of textual data, hence, supporting research in epigenomics and drug discovery

    Negotiating narrative: dialogic dynamics of Known, Unknown and Believed in \u201cHarry Potter and the Deathly Hallows\u201d

    Get PDF
    Within the framework of KUB Theory (Bongelli and Zuczkowski 2008, Zuczkowski et al. 2011), information communicated verbally can ultimately be reduced to one of three categories: what the speaker knows (Known), what the speaker does not know (Unknown) and what the speaker believes (Believed). Dialogic communication can be considered as an exchange of information originating in one of these categories and directed towards another. The present study investigates the interaction of Known, Unknown and Believed information in the dialogues found in Chapter 10 of Harry Potter and the Deathly Hallows. It demonstrates how these three categories of information can contribute to a reading of the plot and its progression, and also how aspects of the protagonists\u2019 characters emerge through the language they use in their dialogic communication
    corecore