3 research outputs found

    A Cooperative Coevolution Framework for Parallel Learning to Rank

    Get PDF
    Abstract—We propose CCRank, the first parallel framework for learning to rank based on evolutionary algorithms (EA), aiming to significantly improve learning efficiency while maintaining accuracy. CCRank is based on cooperative coevolution (CC), a divide-and-conquer framework that has demonstrated high promise in function optimization for problems with large search space and complex structures. Moreover, CC naturally allows parallelization of sub-solutions to the decomposed sub-problems, which can substantially boost learning efficiency. With CCRank, we investigate parallel CC in the context of learning to rank. We implement CCRank with three EA-based learning to rank algorithms for demonstration. Extensive experiments on benchmark datasets in comparison with the state-of-the-art algorithms show the performance gains of CCRank in efficiency and accuracy. Index Terms—Cooperative coevolution, learning to rank, information retrieval, genetic programming, immune programming Ç

    A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization

    Full text link
    Large-scale optimization problems that involve thousands of decision variables have extensively arisen from various industrial areas. As a powerful optimization tool for many real-world applications, evolutionary algorithms (EAs) fail to solve the emerging large-scale problems both effectively and efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA that can not only produce high-quality solution by solving sub-problems separately, but also highly utilizes the power of parallel computing by solving the sub-problems simultaneously. Existing DC-based EAs that were deemed to enjoy the same advantages of the proposed algorithm, are shown to be practically incompatible with the parallel computing scheme, unless some trade-offs are made by compromising the solution quality.Comment: 12 pages, 0 figure

    A Cooperative Coevolution Framework for Parallel Learning to Rank

    No full text
    corecore