
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2015

A Cooperative Coevolution Framework for Parallel
Learning to Rank
Shuaiqiang WANG

Yun WU

Byron J. GAO

Ke WANG

Hady Wirawan LAUW
Singapore Management University, hadywlauw@smu.edu.sg

See next page for additional authors

DOI: https://doi.org/10.1109/TKDE.2015.2453952

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WANG, Shuaiqiang; WU, Yun; GAO, Byron J.; WANG, Ke; LAUW, Hady Wirawan; and MA, Jun. A Cooperative Coevolution
Framework for Parallel Learning to Rank. (2015). IEEE Transactions on Knowledge and Data Engineering. 27, (12), 3152-3165.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2889

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35457005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2015.2453952
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Shuaiqiang WANG, Yun WU, Byron J. GAO, Ke WANG, Hady Wirawan LAUW, and Jun MA

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/2889

https://ink.library.smu.edu.sg/sis_research/2889?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/2889?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Cooperative Coevolution Framework for
Parallel Learning to Rank

Shuaiqiang Wang, Member, IEEE, Yun Wu, Byron J. Gao, Ke Wang, Senior Member, IEEE,
Hady W. Lauw, Member, IEEE, and Jun Ma, Member, IEEE

Abstract—We propose CCRank, the first parallel framework for evolutionary algorithms (EA) based learning to rank, aiming to
significantly improve learning efficiency while maintain accuracy. CCRank is based on cooperative coevolution (CC), a divide-and-
conquer framework that has demonstrated high promise in function optimization for problems with large search space and complex
structures. Moreover, CC naturally allows parallelization of sub-solutions to the decomposed sub-problems, which can substantially
boost learning efficiency. With CCRank, we investigate parallel CC in the context of learning to rank. We implement CCRank with three
EA-based learning to rank algorithms for demonstration. Extensive experiments on benchmarks in comparison with the state-of-the-art
algorithms show the performance gains of CCRank in efficiency and accuracy.

Index Terms—Cooperative Coevolution, Learning to Rank, Information Retrieval, Genetic Programming, Immune Programming.

F

1 INTRODUCTION

Ranking schemes are critical for information retrieval
(IR) systems and web search engines. Traditional ranking
methods include the Boolean model, vector space model,
probabilistic model and language model. Recently, learn-
ing to rank has received increasing attention [1], [2], [3],
[4], [5], [6], [7]. Given training data, a set of queries
each associated with a list of search results labeled by
relevance degree, learning to rank returns a ranking
function that can be used to order search results for
future queries.

With learning accuracy being the primary concern,
learning efficiency can be a crucial issue [1], [8]. Due
to diversity of queries and documents, learning to rank
involves larger and larger training data with many fea-
tures. For example, the CSearch dataset contains ∼25
million instances with 600 features, and the MSLR-
WEB30K dataset collects ∼19 million instances with
136 features. Recently, utilization of click-through data
[9] bypasses manual labeling and enables collection of
unlimited training data. In addition, due to the rapid
growth of the Web, ranking functions need to be re-
learned repeatedly. Therefore, it emerged to be an impor-

• A primary version of this paper was presented in the 25th AAAI Confer-
ence on Artificial Intelligence (AAAI), San Francisco, USA, August 7-11,
2011.

• S. Wang is with the Department of Computer Science and Information
Systems, University of Jyväskylä, Mattilanniemi 2, Jyväskylä, Finland
40100. E-mail: shuaiqiang.wang@jyu.fi.

• Y. Wu and J. Ma are with the School of Computer Science and Technology,
Shandong University, 1500 Shunhua Road, Jinan, China 250100.

• B. Gao is with the Department of Computer Science, Texas State Univer-
sity, 601 University Drive, San Marcos, TX, USA 78666.

• K. Wang is with the Department of Computer Science, Simon Fraser
University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.

• H. Lauw is with the School of Information Systems, Singapore Manage-
ment University, Singapore 178902.

tant research problem to achieve high efficiency through
parallelization while maintaining accuracy.

In light of this, we propose CCRank, a parallel learning
to rank framework based on cooperative coevolution
(CC), aiming to significantly improve learning efficiency
while maintain accuracy.

Evolutionary algorithms (EAs) are derived from Dar-
winian evolutionary principles and widely applied in
computationally difficult optimization and classification
problems [10]. An evolutionary algorithm maintains a
population of individuals (solutions) that evolve from
generation to generation. Each individual is associated
with a fitness score. In standard EAs, fitness scores are
static (do not vary over time) and absolute (independent
of other individuals). However, selecting an adequate
fitness function for a particular optimization problem
can be as difficult as solving the problem itself [11].

Coevolutionary algorithms offer an alternative, where
the fitness of an individual is relative and determined
in relation to other individuals. In addition, such al-
gorithms maintain a collection of EAs that co-evolve
simultaneously, where the EAs can interact in either a
competitive or a cooperative manner.

In competitive coevolution, individuals represent com-
plete solutions that are gradually refined. Cooperative
coevolution (CC) is used in situations where a problem
can be naturally decomposed into sub-components. In
CC, individuals represent such sub-components and are
assessed in collaboration with other individuals so as to
form complete solutions [12], [13], [14].

CC are advantageous in solving problems with excep-
tionally large search space and complex structures [15].
They have been successfully applied to a variety of
domains, e.g., function optimization [16], manufactur-
ing scheduling [17] and neural network design [18].
CC follow a divide-and-conquer strategy, decomposing

ppyeo
Typewritten Text

ppyeo
Typewritten Text

ppyeo
Typewritten Text
2015, vol. 27, 12, 3152-3165http://dx.doi.org/10.1109/TKDE.2015.2453952

ppyeo
Typewritten Text

ppyeo
Typewritten Text

ppyeo
Typewritten Text

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

a complex problem into sub-problems and combining
sub-solutions (individuals) in the end to form the final
complete solution.

Recently, new advances in multicore processor tech-
nology have enabled a wave of parallelization in achiev-
ing high performance computing. In CC, EAs evolve
almost separately. Thus, the evolving process can be
naturally parallelized, allowing significant improvement
in learning efficiency. Unfortunately, this privilege has
not been explored previously for learning to rank. In
this paper, we investigate parallel CC in the context of
learning to rank.

Early CC-based algorithms (e.g., JACC-G [19],
CCEA [16], CCPSO [20]) solve optimization problems.
Adapting CC to learning to rank is non-trivial, which
requires completely different treatments for solution
representation, problem decomposition, evolution, and
combination.

Instead of a vector representation as in optimization
algorithms, in CCRank a solution is a ranking function
represented by a binary tree for easy parsing, implemen-
tation, and interpretation [21], [22], [23]. Accordingly,
individuals represented by sub-trees form a set of pop-
ulations which evolve in parallel.

For problem decomposition, optimization algorithms
divide the feature space into subspaces of features, each
corresponding to a sub-problem. Sub-problems and in-
dividual sub-solutions are within their predetermined
subspaces. This decomposition is appropriate because
their search space is a Cartesian product of features.
In CCRank, the search space is non-linear. A similar
decomposition would lead to significant loss of infor-
mation and promising search space. In this study, the
decomposition procedure is as follows: Firstly, we ini-
tialize L solutions randomly, represented by trees, from
the full feature space. Then, we decompose each tree
into N sub-trees, resulting in N populations each with L
individuals. All populations co-evolve from generation
to generation in parallel.

Based on the same argument, the evolution process
differs in optimization algorithms and CCRank. In the
former, individuals evolve within the same predeter-
mined subspace. In the latter, an open approach is
adopted in the sense that any feature from the full
feature space can be selected into the subspace. Although
the features in a subspace change dynamically, the size
of the subspace is upper-bounded, to be precise, 2d−1

where d is the depth of the sub-tree.
The combination process assemblies individuals into a

complete solution. For optimization algorithms, combi-
nation is straightforward as individuals are represented
as vectors, where combination is done at the very end
of the whole iterative evolution process. In CCRank,
individuals are sub-trees and we need to assemble them
properly to form a complete solution. In addition, since
learning to rank requires validation of candidate ranking
models, each being a solution, we need to collect a pool
of diverse candidates produced by different generations.

Thus, in CCRank combination is done after each gener-
ation during the iterative evolution process.

In CCRank, parallelization of EAs is enabled within
generations. Although EAs for sub-solutions can evolve
almost independently, we cannot allow them to execute
continuously until the end. This is because, as discussed
above, in CCRank we need to perform combination to
produce candidates after each generation. Thus, EAs
must suspend their execution at the end of each gener-
ation. After the combination is done, the EAs will con-
tinue to execute in parallel again in the next generation.

To demonstrate the improvements achieved by
CCRank, we construct three implementations of CCRank
with three EA-based learning to rank algorithms:
RankGP based on genetic programming (GP) [24],
RankIP based on immune programming (IP) [25], and
RankGDE based on the tree-based geometric differential
evolution (GDE) [26], [27].

To evaluate the performance of CCRank, we conduct
two series of experiments with benchmark datasets in
comparison with the state-of-the-art algorithms. Experi-
mental results show the performance gains of CCRank
in efficiency and accuracy.

Contributions. Our main contributions are as follows:
1. We investigate parallel cooperative coevolutionary

algorithms in the context of learning to rank.
2. We propose CCRank, the first parallel framework

for learning to rank, aiming to significantly improve
learning efficiency while maintain accuracy.

3. We implement CCRank with three EA-based learn-
ing to rank algorithms for demonstration.

Organization. The rest of the paper is organized as
follows. Section 2 reviews the related work. Section 3 in-
troduces the background. Section 4 proposes the CCRank
framework. Section 5 implements CCRank with three
EA-based learning to rank algorithms. Section 6 reports
the experimental results. Section 7 concludes the paper.

2 RELATED WORK

2.1 Learning to Rank for Information Retrieval

Learning to rank. Learning to rank has received in-
creasing attention recently from both machine learning
and Information Retrieval (IR) communities. Now we
review several representative algorithms. RankSVM [3],
[28] optimizes a concave lower bound of mean average
precision (MAP , an IR evaluation measure) with struc-
tured SVM. In [29], the same idea is extended to optimize
other IR evaluation measures of normalized discounted
cumulative gain (NDCG) and mean reciprocal rank
(MRR). RankBoost [2] adopts a Boosting approach for
learning to rank. It minimizes the weighted number of
disordered pairs. AdaRank [4] is also a Boosting ap-
proach, but it minimizes a loss function directly defined
on the performance measures. ListNet [1] introduces
a probabilistic list-wise loss function, and uses neural

WANG et al.: A COOPERATIVE COEVOLUTION FRAMEWORK FOR PARALLEL LEARNING TO RANK 3

network and gradient descent to train a list predic-
tion model. iGBRT [5] proposes an initialized gradient
boosted regression trees (GBRT) algorithm, which uses
GBRT to further refine the results of Random Forests
for ranking. LambdaMART [6] is derived from the tree-
boosting optimization MART [30] and the listwise Lamb-
daRank [31], which can combine their strengths and
demonstrate promising performance for widely used
information retrieval measures. Top-k learning to rank
[7] presents an efficient labeling strategy to generate the
ground-truth of the top-k ordering items, and proposes
FocusedRank, a new ranking model to fully capture the
characteristics of the top-k ground-truth.

Evolutionary algorithms-based approaches. Discovery
of ranking functions based on evolutionary algorithms
(EAs) has been extensively studied in the past few years.
Fan et al. [22] proposed a genetic programming (GP)
[24] based approach to automatically generate specific
weighting schemes for different contexts, and demon-
strated that GP was effective in improving the perfor-
mance of the document ranking problem in information
retrieval. Besides, Fan et al. [32] investigated the effects
of the fitness functions on genetic programming-based
learning to rank for information retrieval. Trotman [33]
added 4 baseline ranking functions as individuals in the
initial population to guarantee that the ranking precision
in training was no worse than the baselines, including
the inner product [34] and cosine similarity [35] between
query and document vectors, the probability model [35],
and Okapi BM25 [36]. Almeida et al. [21] used parts
of well-known, significant, and proven effective ranking
formulas as basic components for constructing ranking
functions. Wang et al. [23] proposed RankIP, a ranking
function discovery approach based on immune program-
ming [25].

Other algorithms are surveyed in [37]. Differing from
all of these algorithms, CCRank is a parallel framework,
aiming to significantly improve learning efficiency while
maintain accuracy.

2.2 Parallel Machine Learning

Parallel machine learning. Many sophisticated machine
learning algorithms cannot process large data sets. Par-
allelization is an effective way of achieving speed-up.
IBM Parallel Machine Learning Toolbox (PML)1 contains
the parallel version of many commonly-used machine
learning algorithms (e.g., SVM), and includes an API
for incorporating additional algorithms. The toolbox can
work on various types of architecture, e.g., multicore
machines. By distributing the required computation to
computing nodes in a parallel fashion, training can be
expedited by several orders of magnitude.

With the advances of multicore technology, parallel
machine learning is emerging as an active research dis-
cipline. For example, Collobert et al. [38] proposed a

1. http://www.research.ibm.com/haifa/projects/verification/ml
toolbox/

parallel algorithm for SVMs for very large-scale prob-
lems. Instead of processing whole training dataset in one
step, it splitted the dataset into subsets and optimized
the subsets with multiple SVMs in parallel. Experimental
results showed that the time complexity of the parallel
algorithm growed linearly with the number of instances.
Graf et al. [39] presented an effective combination strat-
egy for the parallel SVM algorithm, where the partial
results of SVMs were combined and filtered again in
a “Cascade” of SVMs, until the global optimum was
reached. Chu et al. [40] introduced a “summation form”
for machine learning algorithms fitting the statistical
query model, and adapted the map-reduce paradigm
[41] to parallelize variety of learning algorithms, includ-
ing locally weighted linear regression, k-means, logis-
tic regression, naive Bayes, SVM, ICA, PCA, gaussian
discriminant analysis, EM, and back propagation neural
network.

Several efforts have been made on parallelizing learn-
ing to rank algorithms for significant efficiency gains.
For example, Shukla et al. [42] implemented the ListNet
[1] algorithm with the parallel Spark framework, and
De Soursa et al. [43] proposed a GPU-based parallel
learning to rank algorithm PLRAR to accelerate their ac-
tive learning-based ranking algorithm LRAR. However,
these algorithms can only parallelize certain ranking
algorithm, and the efforts on a parallel framework to
parallelizing a group of learning to rank algorithms are
still very limited.

Cooperative coevolution. Cooperative coevolution (CC)
[16] is a divide-and-conquer coevolutionary architecture
for solving problems with exceptionally large search
space and complex structures.

Early CC-based algorithms are successfully applied to
the function optimization problems. For example, CCDE
[44] adopts the differential evolution (DE) [45], [46]
to implement the cooperative co-evolution framework,
demonstrating significant improvement in accuracy over
the conventional DE and the cooperative co-evolutionary
genetic algorithm (CCGA). JACC-G [19] uses JADE
[47], a recent and efficient variant of DE, to evolve
the subsolutions and generate a weighting vector for
combination of the sobsolutions. Experiments demon-
strates high efficiency on optimizing 1000-dimension
benchmark functions. DECC [48] provides an effective
problem decomposition method in the CC framework
for large scale non-separable problems, where inter-
acting variables were captured and grouped into sub-
components based on their delta values. CCPSO [20]
presentes a new cooperative coevolving particle swarm
optimization (CCPSO) algorithm for scaling up particle
swarm optimization (PSO) algorithms in solving large-
scale optimization problems.

CCRank is the first framework adapting CC to the
learning to rank problem.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

3 THE LEARNING TO RANK PROBLEM

Let D be a collection of documents, each represented by
a vector of feature values. In an information retrieval
system, for a query q, a list of documents from D are
returned as search results, where the documents are
ranked according to their relevance to q.

For a given query q, the ground truth relevance of
the documents with respect to q (judged by human
experts) is defined as a function rel : D → N, where N
is the natural number set indicating different relevance
levels. In some cases, rel is a binary function, mapping
a document to either 0 (irrelevant) or 1 (relevant). In
our experiments, we considered 3 relevance levels of 0
(irrelevant), 1 (partially relevant), and 2 (relevant).

Let f : D → R be a ranking function assigning
real number relevance scores to documents, where R
denotes the real number set. The effectiveness of ranking
functions can be evaluated by a given measure s, such
as precision at k (P@k), mean average precision (MAP),
and normalized discount cumulative gain (NDCG@k).

Given a training data set T and an evaluation measure
s, the learning to rank problem is to learn a ranking
function f based on T such that s(f) is maximized.

4 THE CCRANK FRAMEWORK

CCRank parallelizes evolutionary algorithms (EA)-based
learning to rank methods, aiming to significantly im-
prove learning efficiency while maintain accuracy.

4.1 EA-based Learning to Rank Algorithms
EA-based learning to rank has become one of the
most important branches in the learning to rank field.
It can directly optimize the non-continuous and non-
differentiable IR evaluation measures such as P@k,
MAP and NDCG@k for achieving high accuracy [37].
Besides, it can obtain non-linear or even non-polynomial
ranking functions for improvement in accuracy based on
basic function operators such as

√
· , log, sin and cos [37],

resulting from much larger search space.
In recent years, many evolutionary algorithms and

their variants have been proposed, which share substan-
tial similarities in structure. Based on these structural
similarities, in this study we provide a general algorithm
for EA-based learning to rank.

The pseudocode of EA-based learning to rank is
shown in Algorithm 1, where P(g)

i denotes population
i in the gth generation, C denotes the candidate set, and
s denotes the fitness function of individuals.

Line 1-4 performs initializations, including randomly
generation of N individuals for the initial population
P0 (line 1), evaluation of each individual in P0 (line 2),
selection of the best individual f (0) from P0 (line 3), and
collection of f (0) into the candidate set C (line 4).

Lines 5-10 show the whole evolution process from gen-
eration to generation. In particular, line 6 evolves current
population of individuals P(g) based on the previous

Algorithm 1: EA-based learning to rank
Input : Training set T , validation set V , maximum

number of generations G, number of
populations N

Output: Ranking function f

1 P0 ←Initialize ()
2 Evaluate (P0, T)
3 f (0) ← SelectBestIndividual (P0)
4 C ← {f (0)}
5 for g ← 1 to G do
6 Pg ←Evolve (Pg−1)
7 Evaluate (Pg , T)
8 f (g) ← SelectBestIndividual (Pg)
9 C ← C ∪ {f (g)}

10 end
11 sT (C)← Evaluate (C, T)
12 sV(C)← Evaluate (C,V)
13 f ← Select (sT (C), sV(C))

generation P(g−1), line 7 evaluates each individual in
P(g), line 8 selects the best individual f (g) from P(g), and
line 9 puts f (g) into the candidate set C.

Lines 11-12 calculate the performance measures sT (C)
and sV(C) for the candidates using the training set T
and validation set V , based on which line 13 selects
the ranking function f . Let fi ∈ C be the ith candidate
ranking function. The following formula [23] is used for
selection:

argmax
i

((α× sT (fi) + β × sV(fi))− γ × σi) , (1)

where γ is a constant, σi is the standard deviation of
sT (fi) and sV(fi), and the values of α and β are based
on the sizes of the training set and validation set, i.e.,
α = |T |

|T |+k×|V| , β = k×|V|
|T |+k×|V| .

4.2 Overview of CCRank

CCRank adapts parallel cooperative coevolution (CC) to
EA-based learning to rank algorithms. It learns a ranking
function from training data in two phases.

CCRank starts with the problem decomposition phase
(detailed in Section 4.4). Firstly L initial solutions, rep-
resented by trees, are generated randomly from the
full feature space. Then, each tree is decomposed into
N sub-trees, resulting in N populations each with L
individuals.

The evolution phase (detailed in Section 4.5) starts after
problem decomposition. It is an iterative process, where
N populations co-evolve in parallel from generation to
generation. Each population maintains a collection of
individuals and a winner, which is the best individual
in the population with the biggest fitness value.

At the end of each generation, the parallel execution
is suspended and a complete solution f is produced by
a combination operation, which assembles N winners

WANG et al.: A COOPERATIVE COEVOLUTION FRAMEWORK FOR PARALLEL LEARNING TO RANK 5

evolved in N populations. Then f is collected into a
solution pool as a candidate ranking function, which is
used to be selected with the validation data after the
iterative evolution process.

Note that in standard CC, combination is done only
once after the evolution ends. In CCRank, combination
needs to be applied at the end of each iteration of the
evolution phase. That is because learning to rank, as a
classification problem, requires validation of candidate
classifiers (solutions), for which we need to collect a pool
of diverse candidates produced by different generations.

After the evolution process ends, validation data are
used to select the best solution among all candidates as
the final ranking function to return.

4.3 Solution Representation
EA-based algorithms for optimization problems use vec-
tors to represent solutions. For the learning to rank
problem, the ranking function f can be non-linear. In
CCRank, we use the tree structure to represent solu-
tions. Accordingly, individuals are represented as sub-
trees. Trees not only have sufficient expressive power to
represent non-linear functions [21], [22], they also have
the advantage of allowing easy parsing, implementation
and interpretation.

In particular, for each tree, the leaf nodes contain
features and constants. The features mainly classified as
content features and hyperlink features. The content fea-
tures can be further classified as low-level features (some
basic statistical information of the collection, documents
and queries, such as term frequency tf and inverse
document frequency idf) and high-level features (the
outputs of some classic approaches such as BM25 [49]
and LMIR [50]). The hyperlink features usually include
the numbers of hyperlinks to the documents, output of
PageRank algorithm, etc. Constants serve as coefficients
of features in f . In CCRank, 19 constants are used, which
are 0.1, 0.2, ..., 0.9, 1, 2, ..., 10.

The internal nodes of the trees contain 8 basic function
operators:
• 4 basic arithmetic function operators +,−,× and ÷.
• 4 non-polynomial operators

√
· , log, sin and cos.

In some operators, parameters need protection mech-
anisms. For example, x in the logarithm function log(x)
should be greater than zero, y in the division function
x ÷ y cannot be zero, and x in the square root function√
x should be no less than zero.
In CCRank, we design two protection mechanisms for

the protected parameter x:
• PM(1) x := |x|, if x < 0.
• PM(2) x := ε, if x = 0, where ε is a number close

to zero. In our experiments ε = 0.000001.
Table 1 presents these protection mechanisms in

CCRank, where x-PM(i) means x needs the ith protec-
tion mechanism in the basic function operation.

The depth d of a tree representing a complete solution
is determined by the total number of features nF and

TABLE 1
Basic Function Operations and Protection Mechanisms

Function Operations Example Protected Mechanism
+,−,× x+ y –
÷ x÷ y y-PM(2)

sin, cos sin(x) –√
·

√
x x-PM(1)

log log(x) x-PM(1) & x-PM(2)

the total number of constants nC . An empirical design
[22], [23] has been demonstrated that the tree should be
deep enough so that the number of leaf nodes is bigger
than nF + nC :

d = dlog2(nF + nC)e+ 1, (2)

where dxe is the seiling function that returns the smallest
integer not less than x. For example, for the LETOR
dataset, nF = 46. Let nC = 19, and thus d = dlog2(46 +
19)e + 1 = 7 + 1 = 8 such that trees has 28−1 =
128 ≥ 46+19 leaf nodes. For the MSLR-WEB30K dataset,
nF = 136, and thus d = dlog2(136 + 19)e+ 1 = 8 + 1 = 9
such that trees has 29−1 = 256 ≥ 136 + 19 leaf nodes.

f3

(f1 - f2) + (0.5 * f3)

+

_

0.5f2f1

*

Fig. 1. Tree representation.

A tree can be parsed into a function. Figure 1 shows
the tree representation for an example ranking function
(f1 − f2) + (0.5 ∗ f3).

4.4 Decomposition Phase
CC-based optimization algorithms divide the feature
space into subspaces of features, each corresponding
to a sub-problem. This decomposition is appropriate
because their search space is a Cartesian product of
features. In CCRank, the search space is non-linear. A
similar decomposition would lead to significant loss of
information and promising search space.

In CCRank, initially L solutions, represented by trees
of depth d, are generated randomly from the full feature
space. Then, each tree is decomposed into N sub-trees,
resulting in N populations, each with L individuals.
Each population will be assigned an EA to evolve. Figure
2 shows the decomposition of a single tree (left-hand
side) into N = 4 individuals (right-hand side).

The depth of sub-trees (individuals) dI upper-bounds
the feature space of individuals. This parameter is used
in CCRank whenever individuals are generated. The
depth of assembler (to be explained in Section 4.5) is
determined by dA = blog2 nP cwhere nP is the number of
processors used in the parallel evolution process. Thus,
dI = d − dA, which implies that the size of the feature

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Individual i2

+

f5 f6

Individual i4

Individual i1

Individual i3

f1 f2

*

7 f3

*

2 f4

_

Assembler

+

++

Solution

i2 i3

Assembler

i1 i4

+

+ +

+

f5 f62 f4

_

f1 f2

*

7 f3

*
Combination

Decomposition

Fig. 2. Decomposition and combination.

space of individuals is upper-bounded by 2dI−1. For
example, suppose the depth of trees (solutions) d = 8.
The calculation of d was introduced in Section 4.3. Let
the number of processors nP = 8. Then, the depth
of assembler dA = blog2 8c = 3, and the depth of
individuals dI = 8− 3 = 5.

4.5 Evolution Phase
Resulting from the differences in search spaces, linear
vs. non-linear, the evolution process differs in function
optimization algorithms and CCRank. In the former,
individuals evolve within the same predetermined sub-
space. In the latter, an open approach is adopted in the
sense that any feature from the full feature space can be
selected into the subspace.

Evolution in CCRank executes iteratively, and the
number of iteration is predetermined by a given pa-
rameter. Each iteration contains a generation of evolv-
ing populations. N populations evolve in parallel, each
maintaining a collection of individuals and a winner,
which is the best individual in the population with the
biggest fitness value.

Figure 3 illustrates the iterative evolution process for
4 populations in EA1, EA2, EA3 and EA4 respectively.
Within each iteration, there is a generation as shown
at the top. Within each generation, in the beginning,
individuals of each population for the current generation
are generated based on individuals from the previous
generation. Then, fitness values of individuals are calcu-
lated in a cooperative manner, as to be detailed shortly.

After the generation, parallel execution is suspended
temporarily and the candidate solution for the current
generation will be generated. First, the winner for each
population is updated based on the calculated fitness.
Then, all the winners are combined, with the help of the
assembler, into a candidate solution. If the preset max-
imum number of iterations is not met, a new iteration
will start and the 4 populations will continue to evolve
in a new generation in parallel.

Combination Operation. The combination process as-
semblies individuals into a complete solution. For func-
tion optimization algorithms, since individuals are vec-
tors, combination is straightforward, which is done in

Population

Generation

Fitness

Calculation
Cooperation

Population

Generation

Fitness

Calculation

Population

Generation

Fitness

Calculation

Population

Generation

Fitness

Calculation

w1 w2 w3 w4Winners

Assembler Combination

Candidate

Termination

Next Generation

Select Select Select Select

End

EA 1

Generation

EA 2 EA 3 EA 4

Fig. 3. Evolution.

the very end of all generations. In CCRank, individuals
are sub-trees and we need to assemble them properly
to form a complete solution. In addition, since learning
to rank requires validation of candidate ranking models,
each being a solution, we need to collect a pool of diverse
candidates produced by different generations. Thus, in
CCRank combination is done after each generation dur-
ing the evolution process. Precisely, combination occurs
in two cases: fitness calculation (right before the end of
the generation, as shown in Figure 4) and candidate
generation (right after the end of the generation as shown
in Figure 3).

Combination is the inverse process of decomposition.
In Figure 2, 4 individuals i1 ∼ i4 (right-hand side)
are combined into a complete solution (left-hand side)
with the help of the assembler. Assemblers are used
to assemble individuals into complete solutions, where
they form “crowns” of solution trees. Thus, all of their
nodes are internal nodes of solution trees and contain
function operators only. In particular, we use + so as to
generate simple ranking functions.

Fitness calculation. Under the CC framework, fitness
of individuals is based on how well they cooperate
with other populations. Figure 4 illustrates the fitness
calculation for individual i in EA2, one of the 4 EAs
in Figure 3. First, individual i and winners w1, w3 and
w4 selected in EA1, EA3 and EA4 from the previous
generation, with the help of the assembler, are combined
into a solution (right-hand side). Then, the evaluation
measure, e.g., NDCG@k, for the combined solution is
calculated using training data, and the resulting score is
assigned to the individual i as its fitness.

The fitness values of other individuals are calculated
in the same manner. It seems that fitness calculation re-
quires cooperation involving mutual dependency, which
would make parallel execution of EAs infeasible. How-

WANG et al.: A COOPERATIVE COEVOLUTION FRAMEWORK FOR PARALLEL LEARNING TO RANK 7

i w3

Assembler

w1 w4

+

+ +

+

f5 f62 f4

_

f1 f2

*

5 f6

*
5 f6

Individual i in EA 2

*

Winner w4

f5 f6

+

Winner w3

2 f4

_

f1 f2

*

Winner w1 Assembler

+

+ +

Combination

Fig. 4. Fitness calculation.

ever, note that the cooperation is between two different
generations. As shown in Figure 4, the individual i is
from the current generation, while winners w1, w3 and
w4 are the best individuals from the previous generation.
Thus, there is no mutual dependency and all EAs can
perform fitness calculation in parallel.

4.6 Pseudocode
We have explained the main procedures of CCRank.
Now we summarize them and present the pseudocode
of CCRank in Algorithm 2.

Algorithm 2: CCRank
Input : Training set T , validation set V , maximum

number of generations G, number of
populations N

Output: Ranking function f

1 Initialize ()
2 for g ← 1 to G do
3 for i← 1 to N do
4 P(g)

i ← Evolve (P(g−1)
i)

5 Update (wi, Pg
i)

6 end
7 f (g) ← Combine (w1, . . . , wN , A)
8 C ← C ∪ {f (g)}
9 end

10 sT (C)← Evaluate (C, T)
11 sV(C)← Evaluate (C,V)
12 f ← Select (sT (C), sV(C))

In Algorithm 2, P(g)
i denotes the ith population in the

gth generation, wi denotes the winner of ith population,
A denotes an assembler, C denotes the candidate set, and
s denotes the fitness function of individuals.

Line 1 performs initialization, including random gen-
eration of N populations, evaluation of each individual,
and selection of initial winners.

Lines 2-9 show the whole evolution process from
generation to generation. Specifically, lines 3-6 show one

generation of the evolution process for all populations
that execute in parallel. In particular, line 4 evolves
individuals based on the previous generation, and line
5 updates the winner for each EA. Lines 7-8 generate
candidate solutions.

Lines 10-11 calculate the performance measures sT (C)
and sV(C) for the candidates using the training set T
and validation set V , based on which line 12 selects the
ranking function f via Equation (1) (see Section 4.1).

4.7 Discussion

Time complexity of non-parallel CCRank. As shown in
Section 4.5 and Figure 3, in each iteration, the evolution
phase of CCRank involves four steps: population evo-
lution, fitness calculation, winner selection, and solution
combination.

In population evolution, generation of each individual
(subtree) in EAs involves 2dI − 1 nodes, where dI is
the depth of individuals. In the cases of N EAs each
maintaining L individuals, the time complexity of this
step is O(2dINL).

In fitness calculation, each individual and winners
from other EAs are combined into a solution for eval-
uation. Decoding a solution into a ranking function
involves 2d − 1 nodes. The whole ordering process refers
to mnk comparisons, where m is the number of queries,
each associated with n documents, and the top-k (k � n)
documents in each query are ordered to calculate the
fitness of the solutions like NDCG@k. Thus the time
complexity of the fitness calculation step is O(2dNLmnk)
in the cases of N EAs.

Obviously, the time complexity of the winner selection
and solution combination steps are O(NL) and O(N)
respectively. Thus the time complexity of CCRank in
each iteration is O

(
2dINL+ 2dNLmn log n+NL+N

)
.

Specifically, evaluation of some IR measures such as
NDCG just needs to order top-k (k � n) documents for
each query. In this case, the time complexity of CCRank
in each iteration is O

(
2dINL+ 2dNLmnk +NL+N

)
.

Speed-up of CCRank. Firstly, CCRank does not always
execute in parallel. In CCRank, the first three steps of
the population evolution, fitness calculation and winner
selection are performed in parallel. After that, it must
suspend the parallel execution to perform combination
in order to produce the candidate solution. Secondly,
parallelization introduces some additional costs resulting
from process and memory scheduling problems. For
example, although the computation tasks of each process
are equal thanks to same size of population in each
EA, EAs still spend different amounts of time to evolve
for a certain generation. Since the combination can start
only after all EAs finish, the time CCRank spends on
an generation is equal to the longest time that any EA
can possibly spend for the generation. Let ε be the cost
resulting from the scheduling problem. The speed-up

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

ratio of CCRank can be formulated as follows:

s =
N
(
2dIL+ 2dLmn log n+ L

)
+N

(2dIL+ 2dLmn log n+ L) +N + ε
. (3)

Specifically, with some top-k IR evaluation measures,
the speed-up ratio of CCRank can be reformulated as
follows:

s′ =
N
(
2dIL+ 2dLmnk + L

)
+N

(2dIL+ 2dLmnk + L) +N + ε
. (4)

5 IMPLEMENTATIONS OF CCRANK

We choose RankGP, RankIP and RankGDE, three evo-
lutionary algorithms (EA)-based learning to rank algo-
rithms to implement CCRank, correspondingly named
CCRank-GP, CCRank-IP and CCRank-GDE.

5.1 CCRank-GP
CCRank-GP is constructed by directly implementing
the function Evolve in Algorithm 2 as the evolution
process of RankGP, where genetic programming (GP) is
utilized to learn ranking functions with ranking-oriented
features, constants and basic function operators (see
Section 4.3).

Genetic programming was derived from genetic algo-
rithm, and now becomes an important branch of evolu-
tionary algorithms. The main difference between genetic
programming and genetic algorithm is the representa-
tion of individuals. In genetic algorithm, an individual
is represented as a sequence of numbers, while in genetic
programming, an individual is represented as a tree
structure.

Inspired by Darwinian evolutionary principles, genetic
programming maintains a population of individuals (so-
lutions) that evolve from generation to generation with
three evolutionary operations: reproduction, crossover
and mutation.
• Reproduction. Reproduction aims to maintain high-

fitness individuals during evolution. Specifically, the
reproduction operator selects a high-fitness individ-
ual ip from current generation, and then reproduce
an offspring io by cloning ip for return.

• Crossover. Crossover aims to create individuals with
higher fitness scores for the next generation based
on current generation of individuals. Specifically,
the crossover operator selects two high-fitness in-
dividuals ip1

and ip2
from the current generation as

parents, and then generates two offsprings io1 and
io2 by sexually combination of ip1 and ip2 for return.

• Mutation. Mutation aims to create some variations
of high-fitness individuals for the next generation
based on current generation of individuals. Specifi-
cally, firstly the mutation operator select one high-
fitness individual ip from the current generation as
a parent, and then replaces a randomly selected
subtree of ip with a randomly generated one for
return.

In evolution process, we utilize the roulette wheel
selection strategy, where each individual is selected as
a parent with a certain probability proportional to its
fitness scores. In particular, the selection probability of
individual is is:

Pr(is) =
F(is)∑
i∈C F(i)

, (5)

where C is the current generation of individuals, and
F(i) is the fitness function that returns a fitness score
for each individual i ∈ C.

5.2 CCRank-IP
CCRank-IP is constructed by implementing the function
Evolve in Algorithm 2 as the evolution process of
RankIP, where immune programming (IP) is utilized to
learn ranking functions.

Immune programming is an extension of immune
algorithms, particularly the clonal selection algorithm,
inspired by the biological immune systems or their
principles and mechanisms.

Biological immune systems. Immune system can protect
the organism against pathogens and eliminate malfunc-
tioning cells. For vertebrates, the immune system is
composed of a great variety of molecules, cells, and
organs spread throughout the body, where various dis-
tributed elements perform complementary tasks without
any central organs for control [51], [52].

All elements recognizable by the immune system
are called antigens, including pathogens, malfunctioning
cells, and healthy cells. The native cells, which originally
belong to the organism and are harmless to its functions,
are termed self or self antigens, while the disease-causing
elements are named non-self or non-self antigens [25].

An immune system should be able to distinguish the
harmless cells from the pathogens that causing diseases
by lymphocytes, which can produce antibodies to recog-
nize and bind to a certain type of antigens. Besides, for
effective reaction to new pathogens and improvement
in response to existing ones, the immune system should
be capable of memory and learn [53]. After successful
recognition, antibodies capable of binding with pathogen
are cloned. Besides, a subpopulation of antibodies also
undergo mutations, that provides the ability in recog-
nition of both the pathogen itself and similar ones.
Moreover, some of the mutated clones may have higher
affinity. In the immune system, this process is usually
called hypermutation due to a high rate of mutation.

Immune programming. Immune programming (IP) is
an EA-based machine learning paradigm inspired by
inspired by biological immune systems. In the IP algo-
rithm, the antigen represents the given problem while
the antibodies represent a set of candidate solutions.
Similar to individuals in GP, antibodies in IP are encoded
as trees. Each antibody is associated with an affinity
score, indicating the fitness of the antibody to the anti-
gen. The antibodies are generated at random initially,

WANG et al.: A COOPERATIVE COEVOLUTION FRAMEWORK FOR PARALLEL LEARNING TO RANK 9

and evolve from generation to generation with three
immune operations: replacement, cloning and hypermu-
tation.
• Replacement. Replacement aims to replace low-

affinity antibodies in current generation with ran-
domly generated ones for next generation. In par-
ticular, a new antibody is generated randomly for
return if a randomly generated number r is no
greater than the replace rate pr, where 0 ≤ r, pr ≤ 1.

• Cloning. Cloning aims to maintain high-affinity an-
tibodies during evolution. First of all, an antibody i
with affinity score of F(i) is selected from current
generation. Given the clone rate pc where 0 ≤
pc ≤ 1, a new antibody is generated by cloning
i for return with probability of pc if a randomly
generated number r is no greater than F(i).

• Hypermutation. Hypermutation aims to create some
variations of high-affinity antibodies for the next
generation based on current generation. Provided
the antibody i is the very antibody selected in the
cloning steps. Given the mutation rate pm where
0 ≤ pm ≤ 1, the mutation operator walks through
all of the nodes of i in certain order, and replaces
each node with a new randomly generated value for
return with a probability of min

(
pm

F(i) , 1
)

.

Algorithm 3: Evolution in Immune Programming
Input : Replace rate pr, clone rate pc, mutation rate

pm, population size P , current population
C with affinity F

Output: Next generation of population N
1 N ← ∅
2 while size(N) < P do
3 r ← Replacement(C, pr)
4 if r 6= null then
5 N ← N ∪ {r}
6 else
7 i← GetGoodAntibody(C)
8 c← Cloning(pc, i,F(i))
9 if c 6= null then

10 N ← N ∪ {c}
11 else
12 m← Hypermutation(pc, i,F(c))
13 N ← N ∪ {m}
14 end
15 end
16 end

The pseudocode of immune programming is shown
in Algorithm 3. First of all, line 1 initializes the next
generation of individuals N as ∅, and then lines 2-16
show the whole evolution process from the current gen-
eration C to the next generation N . In particular, firstly
the replacement operator executes with replace rate pr
(line 3). If a new antibody r is generated successfully, it
will be put into N (lines 4-5). Otherwise, if r cannot be

generated due to pr (line 6), a high affinity antibody i
is selected and considered for cloning with clone rate pc
(lines 7-8). If i is generated successfully, it will be put
into N (lines 9-10). Otherwise, if i cannot be cloned due
to pc (line 11), it is mutated and put into N (lines 12-13).

CCRank-IP. Based on immune programming, RankIP
can learn ranking functions with ranking-oriented fea-
tures, constants and basic function operators, and
CCRank-IP is constructed by parallelizing RankIP with
cooperative coevolution.

However, RankIP and CCRank-IP cannot use IR eval-
uation measures such as MAP and NDCG@k directly as
affinity functions. In immune programming, the affinity
scores should be scaled between 0 and 1 because they are
used as probabilities in cloning and hypermutation.
If all of the them are close to 0, most of the antibodies
would be generated randomly with replacement, and
thus immune programming can be thought of as a ran-
domized algorithm without any heuristics. On the other
side, if all of the the affinity scores are close to 1, most
of the antibodies would be generated with cloning,
resulting in early convergence.

For the learning to rank problem, the evaluation scores
of the most learned ranking functions are too small,
generally less than 0.5 in MAP and NDCG@k. Thus
RankIP and CCRank-IP use a normalized IR evaluation
measures as affinity functions, which shown as follows:

f(x) = logb

(
1 + (b− 1)× x

se

)
, (6)

where x is an IR evaluation measure such as MAP or
NDCG@k, and se is the expected affinity score where
0 ≤ se ≤ 1. Wang et al. [23] demonstrates that the
performance of RankIP is robust to se.

Equation (6) is a convex function that assigns higher
affinity scores for antibodies than linear scale-up. In each
generation, generally most of antibodies (candidate rank-
ing functions) perform poor and achieve unsatisfactory
evaluation scores, e.g., far smaller than 0.5 in NDCG@k.
However, they may contain quality components. Assign-
ing relatively higher affinity scores to them can increase
their survival probabilities during evolution, avoiding
too early convergence to local optimums.

5.3 CCRank-GDE
CCRank-GDE is constructed by implementing the func-
tion Evolve in Algorithm 2 as the evolution process of
RankGDE, where the tree-based geometric differential
evolution (GDE) [26], [27] is utilized to learn ranking
functions.

Differential evolution (DE) [45], [46] is a population-
based stochastic function minimization method, which
has robust performance over a variety of continuous
optimization problems. A DE algorithm maintains a
population of vectors, each representing a solution to
the given problem in Euclidean space. In CCRank-GDE,
tree-based GDE [27] uses trees to encode the solutions

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

(ranking models) to the learning to rank problem in the
generic metric space [54].

Let T1 and T2 be two trees, where p and q are their
roots respectively. Firstly, GDE completes them with
NULLs to make sure they have a same structure. Then
their distance dis(T1, T2) can be evaluated as follows:

dis(T1, T2) =

{
d(p, q), if T1, T2 have no offsprings
d(p, q) + 1

K

∑m
l=1 dis(sl, tl), otherwise

where sl and tl are the subtrees of T1 and T2, K is a
constant where K ≥ 1, which is used to K times signify
the distance between the nodes at the depth r than at the
depth r+1, and the distance d(p, q) between two nodes
p and q is defined as follows:

d(p, q) =

0, if p = q

C|p−q|
maxv,w∈A1

|v−w| , if p, q ∈ A1

δ(i, j), otherwise when p ∈ Ai, q ∈ Aj

,

where A0, A1, A2 and A3 are 4 categories of the nodes
in the tree-based representations. In particular, A0 is the
set only containing NULL, A1 is the set of constants, A2

is the set of basic functions (see Table 1), and A3 is the
set of features. The function δ(i, j) is defined as follows:

δ(0, i) = δ(i, 0) = 5, i ∈ {1, 2, 3}
δ(1, 2) = δ(2, 1) = 2

δ(i, i) = 1, i ∈ {2, 3}
δ(3, i) = δ(i, 3) = 3, i ∈ {1, 2}

In tree-based GDE algorithms, the trees evolve itera-
tively with homologous crossover and recombinations.
• Homologous crossover [27]. Homologous crossover

aims to produce an mutant tree TM based on two
parent trees TA and TB . Given two positive weights
wAM and wBM where wAM + wBM = 1, the ho-
mologous crossover is performed on the common
region of the parent trees, i.e., the largest rooted
region where two parent trees TA and TB share
same topology. The mutant tree TM is generated
using a crossover mask on the common region of
TA and TB such that the nodes of TA and TB in the
common region appear in the crossover mask with
the probability of wAM and wBM respectively.

• Homologous recombination. Homologous recombi-
nation aims to produce an offspring tree TO based
on the mutant tree TM and another parent tree
TC . Firstly, GDE assigns the distance between TC
and TO by dis(TM , TO) = wCM

wMO
dis(TC , TM) where

wCM and wMO are positive weight parameters and
wCM + wMO = 1, and assigns the probability p =
dis(TM ,TO)

1−dis(TC ,TM) . Then GDE initializes TO = TM . Let SM

and SC are subtrees of TM and TC sharing a same
structure. For each node nM (i) in SM and nC(i)
in SC , GDE assigns a random node for the same
position to TO with a probability p if nM (i) = nC(i).
Then the generated tree TO is returned for the next
generation.

Algorithm 4: Evolution in GDE
Input : Population size P , current population C,

and fitness function f
Output: Next generation of population N

1 N ← ∅
2 while size(N) < P do
3 foreach T ∈ C do
4 TA, TB ← Select (C)
5 TM ← Crossover (TA, TB)
6 TO ← Recombination (TM , T)
7 if f(TO) ≥ f(T) then
8 N ← N ∪ {TO}
9 else

10 N ← N ∪ {T}
11 end
12 end
13 end

The pseudocode of GDE is shown in Algorithm 4. In
the beginning, line 1 initializes the next generation of
individuals N as ∅, and then lines 2-13 show the whole
evolution process from the current generation C to the
next generation N . In particular, for each tree T in the
current generation, line 4 firstly selects two parent trees
TA and TB . Then line 5 constructs the mutant tree TM
by homologous crossover on TA and TB . With TM and
T , line 6 generates an offspring tree TO by homologous
recombination. Finally lines 7-11 put TO or T into N
based on their fitness scores.

6 EXPERIMENTS

We conducted two series of experiments using bench-
mark datasets to evaluate the efficiency and accuracy
performance of CCRank.

6.1 Methodology

Datasets. We used LETOR 4.0 and MSLR-WEB30K
benchmark datasets to demonstrate the promise of
CCRank. Each data set has been partitioned into five
parts in order to conduct 5-fold cross validation. For
each fold, three parts are used for training, one part for
validation, and the remaining part for test.

LETOR 4.0 uses the Gov2 Web page collection and
two query sets from Million Query track of TREC 2007
and TREC 2008, called MQ2007 and MQ2008. There are
about 1,700 queries with 69,623 instances in MQ2007
and about 800 queries with 15,211 instances in MQ2008.
The relevance degrees of documents with respect to the
queries are judged on three levels: 2 (definitely relevant),
1 (partially relevant), and 0 (not relevant). For each
query-document pair in LETOR 4.0, there are in total
46 features.

MSLR-WEB30K collects 30,000 queries with ∼19 mil-
lion instances from a retired labeling set of Microsoft

WANG et al.: A COOPERATIVE COEVOLUTION FRAMEWORK FOR PARALLEL LEARNING TO RANK 11

0

25

50

75

100

125

150

175

200

25% 50% 100%

E
x
e

c
u

ti
v
e
 T

im
e

(s
)

Number of Processors 1 2 4 8 16

(a) Execution time

0

2

4

6

8

10

25% 50% 100%

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Number of Processors 1 2 4 8 16

(b) Relative speed-up ratios

Fig. 5. Efficiency of CCRank-IP on LETOR.

0

2

4

6

8

10

12

25% Data 50% Data 100% Data

E
x
e

c
u

ti
o

n
 T

im
e

(1
0

0
0

0
s
)

Number of Processors 1 2 4 8 16

(a) Execution time

0

2

4

6

8

10

12

14

25% Data 50% Data 100% Data

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Number of Processors 1 2 4 8 16

(b) Relative speed-up ratios

Fig. 6. Efficiency of CCRank-IP on MSLR-WEB30K.

Bing (http://www.bing.com/), a commercial web search
engine. The relevance degrees of documents with respect
to the queries take 5 values from 0 (irrelevant) to 4
(perfectly relevant). For each query-document pair of
MSLR-WEB30K, there are in total 136 features.

Parameter setting. We set the parameters in our exper-
iments on datasets LETOR 4.0 and MSLR-WEB30K as
follows. The number of EAs N = 8 are maintained, each
containing L = 1000 individuals that co-evolve up to
G = 100 generations. The depth of complete solutions
is d = 8 on LETOR 4.0 and d = 9 on MSLR-WEB30K
according to Equation (2).

6.2 Efficiency

In the first series of experiments, we demonstrated the
efficiency gain of CCRank-IP on MQ2008 in LETOR
4.0 and MSLR-WEB30K datasets. For each dataset, we
extracted 25%, 50%, and 100% data and generated 3
datasets. There are about 200, 400, and 800 queries
respectively in MQ2008, while 7500, 15000, and 30000
queries respectively in MSLR-WEB30K. Then we ran
CCRank-IP on these datasets varying the number of
processors (1, 2, 4, 8, and 16).

Figures 5 and 6 show the execution time and cor-
responding relative speed-ups of CCRank-IP. From the
results we can see that parallel evolution in CCRank
leads to significant speed-up in comparison with the case
of 1 processor. Besides, we can also obtain the following
observations:

(1) CCRank has difficulties in achieving a linear speed-
up via parallelization. For example, the averaged relative
speed-up ratios are 1.61, 2.92, 4.84 and 9.80 respectively
for LETOR 4.0 with 800 queries in the cases of 2, 4, 8,
and 16 processors, and these numbers are 1.74, 3.88, 7.87
and 11.12 respectively for MSLR-WEB30K with 30,000
queries. (2) The efficiency gain of CCRank is especially
significant with larger training dataset. For example, the
speed-up ratio is about 12 in the case of 16 processors
for MSLR-WEB30K, while this number is only less than
10 for LETOR. (3) The efficiency gains of CCRank are
stable with different numbers of instances from a same
dataset. For example, for LETOR 4.0, the speed-up ratios
are 9.61, 9.20 and 9.80 when 25%, 50% and 100% data are
used respectively in the cases of 16 processor, and their
standard deviation is only 0.31. For MSLR-WEB30K,
these numbers are 12.17, 11.88 and 11.12 respectively,
and their standard deviation is 0.54.

Equations (3) and (4) can be used to explain the three
observations. Firstly, since s, s′ < N , obviously CCRank
cannot achieve a linear speed up via parallelization.
Secondly, the executive time for fitness calculation grows
sharply with larger training data, resulting from greater
depths of individuals (d and dI) and number of instances
(mn). On the other side, the time for other steps are
relatively stable. Since fitness calculation is the most
time-consuming step in the evolution phase, the speed-
up of CCRank is more significant via parallelization of
fitness calculation. Thirdly, with different numbers of
instances from a same dataset, the speed-up functions
differ slightly. Although larger amount of instances may
lead to a higher speed-up ratio, it also increases the
complexity of process and memory scheduling, which
may reduce the speed-up ratio, resulting from a greater
value of ε in Equations (3) and (4). Thus, in this case, the
efficiency gains of CCRank are relatively stable.

6.3 Accuracy

In the second series of experiments, we demonstrated the
accuracy of CCRank on LETOR 4.0 and MSLR-WEB30K.

Evaluation measures. We use three standard ranking
accuracy metrics to evaluate the rank functions gen-
erated by learning to rank algorithms: precision at k
(P@k), mean average precision (MAP), and normalized
discount cumulative gain (NDCG@k). P@k measures
the accuracy within the top k results of the returned
ranked list for a query:

P@k =
of relevant docs in top k results

k
. (7)

MAP takes the mean of the average precision values
over all queries, where the average precision (AP) for
each query is defined as the average of the P@k values
for all relevant documents:

AP =

∑N
k=1

(
P@k × rel(k)

)
relevant docs for this query

, (8)

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

0.4	

0.42	

0.44	

0.46	

0.48	

0.5	

@1	 @2	 @3	 @4	 @5	

CCRank-‐IP	 CCRank-‐GP	 CCRank-‐GDE	
RankIP	 AdaRank	 RankBoost	
RankSVM	 ListNet	 LambdaMART	

(a) P@k on MQ2007

0.38	

0.39	

0.4	

0.41	

0.42	

0.43	

@1	 @2	 @3	 @4	 @5	

CCRank-‐IP	 CCRank-‐GP	 CCRank-‐GDE	
RankIP	 AdaRank	 RankBoost	
RankSVM	 ListNet	 LambdaMART	

(b) NDCG@k on MQ2007

Fig. 7. Performances on MQ2007.

0.33	

0.35	

0.37	

0.39	

0.41	

0.43	

0.45	

0.47	

@1	 @2	 @3	 @4	 @5	

CCRank-‐IP	 CCRank-‐GP	 CCRank-‐GDE	
RankIP	 AdaRank	 RankBoost	
RankSVM	 ListNet	 LambdaMART	

(a) P@k on MQ2008

0.35	

0.37	

0.39	

0.41	

0.43	

0.45	

0.47	

0.49	

@1	 @2	 @3	 @4	 @5	

CCRank-‐IP	 CCRank-‐GP	 CCRank-‐GDE	
RankIP	 AdaRank	 RankBoost	
RankSVM	 ListNet	 LambdaMART	

(b) NDCG@k on MQ2008

Fig. 8. Performances on MQ2008.

where rel(k) is a binary function mapping a document
to either 1 (relevant) or 0 (irrelevant). Note that P@k and
MAP can only handle cases with binary judgment, rel-
evant or irrelevant. Recently, a new evaluation measure
NDCG@k [55] has been proposed to handle multiple
levels of relevance:

NDCG@k = Zk

k∑
j=1

2rel(j) − 1 if j = 1

2rel(j) − 1

log(j)
if j > 1

, (9)

where rel(j) is the integer rating of the jth document,
and the normalization constant Zk is chosen such that
the perfect list gets a NDCG score of 1.

Comparison partners. We compared CCRank-IP,
CCRank-GP and CCRank-GDE with the state-of-the-art
learning to rank algorithms, including RankIP [23],
AdaRank [4], RankBoost [2], RankSVM [3], ListNet [1]
and LambdaMART [6]. In particular, CCRank-IP is the
parallelization of RankIP, and a direct comparison of
the two can provide valuable and irreplaceable insights.

Performance. Table 2 shows the accuracy comparison
under the MAP measure. For MQ2007, CCRank-IP and
RankBoost shared the same performance, which is only
worse than LambdaMART and the difference is very
subtle. For MQ2008, CCRank-IP outperformed all other
algorithms. Although CCRank-GDE and CCRank-GP
failed to achieve improvement in accuracy, it can still be
comparable to the state-of-the-art algorithms. For MSLR-
WEB30K, CCRank-IP, CCRank-GDE and CCRank-GP
can also achieve comparable performance to the compar-

0.25	

0.3	

0.35	

0.4	

@1	 @2	 @3	 @4	 @5	

CCRank-‐IP	 CCRank-‐GP	 CCRank-‐GDE	
RankIP	 AdaRank	 RankBoost	
RankSVM	 ListNet	 LambdaMART	

(a) P@k on MSLR-WEB30K

0.25	

0.27	

0.29	

0.31	

0.33	

0.35	

@1	 @2	 @3	 @4	 @5	

CCRank-‐IP	 CCRank-‐GP	 CCRank-‐GDE	
RankIP	 AdaRank	 RankBoost	
RankSVM	 ListNet	 LambdaMART	

(b) NDCG@k on MSLR-WEB30K

Fig. 9. Performances on MSLR-WEB30K.

TABLE 2
Accuracy in MAP

Algorithms MQ2007 MQ2008 MSLR
CCRank-IP 0.466 0.482 0.405
CCRank-GP 0.459 0.471 0.393

CCRank-GDE 0.463 0.478 0.410
RankIP 0.461 0.472 0.397

AdaRank 0.458 0.466 0.431
RankBoost 0.466 0.465 0.407
RankSVM 0.465 0.470 0.413

ListNet 0.465 0.478 0.396
LambdaMART 0.469 0.481 0.433

ison partners. For example, the performance of CCRank-
GDE is slightly better than ListNet and RankBoost.
Although the performance of CCRank-GP is the worst,
it is merely 0.76% worse than that of ListNet.

Figures 7, 8 and 9 show the accuracy comparison un-
der the P@1∼5 and NDCG@1∼5 measures. The results
are consistent with the ones under MAP . For MQ2007
and MQ2008, CCRank-IP is among the best for both
measures, while CCRank-GDE and CCRank-GP are com-
parable to the comparison partners. For MSLR-WEB30K,
all of our proposed CCRank algorithms are comparable
to the comparison partners. Besides, compared with
RankIP, the performance of CCRank-IP is even slightly
better than RankIP. That is because the complexity of the
models generated by CCRank-IP are lower than those
by RankIP resulting from the simple structure of the
assembler, which is only composed of the operator +.
According to Occam’s razor, simpler models might be
less overfitting, leading to higher test performance.

7 CONCLUSION

In this paper we proposed CCRank, a parallel learning
to rank framework based on cooperative coevolution,
aiming to significantly improve the learning efficiency
while maintain accuracy. Furthermore, we implemented
CCRank with three EA-based learning to rank algo-
rithms based on genetic programming, immune pro-
gramming and geometric differential evolution respec-
tively. We experimentally compared CCRank with state-
of-the-art algorithms on benchmark datasets, demon-
strating the gains of CCRank in efficiency and accuracy.

WANG et al.: A COOPERATIVE COEVOLUTION FRAMEWORK FOR PARALLEL LEARNING TO RANK 13

For future work, we plan to extend CCRank in sev-
eral directions. One direction is to further explore our
parallel CC framework by incorporating some recently
proposed evolutionary algorithms, such as Differential
Evolution [19] and Particle Swarm Optimization [20].
Another direction is to organize other machine learning
algorithms, e.g., SVM and Neural Network, to work in
a collaborative manner for the learning to rank problem,
where we perform each algorithm with a subset of fea-
tures to train a sub-model, and then assemble them into a
complete ranking model for predicting relevance scores.
Last but not least, our current parallel CC framework
has demonstrated significant speed-up, but not scale-up.
We plan to investigate how to further boost efficiency by
taking full advantage of parallelization. For this purpose,
more economic and sophisticated cooperation schemes
need to be considered.

ACKNOWLEDGMENTS

The authors would like to thank the editor and the
anonymous reviewers for their constructive comments
and suggestions. This work is supported in part by
the National Science Foundation (CNS-1305302), the
Academy of Finland (268078), the Natural Science Foun-
dation of China (71402083, 61272240 and 71171122), and
the Natural Science Foundation of Shandong Province
of China (BS2012DX012).

REFERENCES

[1] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank:
from pairwise approach to listwise approach,” in Proceedings of
the 24th International Conference on Machine Learning (ICML), 2007.

[2] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” J. Mach. Learn.
Res., vol. 4, no. 1, pp. 933–969, 2003.

[3] T. Joachims, “Training linear SVMs in linear time,” in Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2006.

[4] J. Xu and H. Li, “AdaRank: a boosting algorithm for information
retrieval,” in Proceedings of the 30th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval
(SIGIR), 2007.

[5] A. Mohan, Z. Chen, and K. Q. Weinberger, “Web-search ranking
with initialized gradient boosted regression trees.” JMLR W&CP,
pp. 77–89, 2011.

[6] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, “Adapting boosting
for information retrieval measures,” Inf. Retr., vol. 13, no. 3, pp.
254–270, 2010.

[7] S. Niu, J. Guo, Y. Lan, and X. Cheng, “Top-K learning to rank:
Labeling, ranking and evaluation,” in Proceedings of the 35th
International ACM SIGIR conference on research and development in
Information Retrieval (SIGIR), 2012.

[8] O. Chapelle, Y. Chang, and T.-Y. Liu, “Future directions in learn-
ing to rank,” JMLR W&CP, vol. 14, pp. 91–100, 2011.

[9] T. Joachims, “Training linear svms in linear time,” in Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2006, pp. 217–226.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

[11] J. Cartlidge and S. Bullock, “Combating coevolutionary disen-
gagement by reducing parasite virulence,” Evol. Comput., vol. 12,
no. 2, pp. 193–222, 2004.

[12] M. P. Navy, M. A. Potter, and K. A. D. Jong, “Cooperative coevo-
lution: An architecture for evolving coadapted subcomponents,”
Evol. Comput., vol. 8, no. 1, pp. 1–29, 2000.

[13] R. A. Watson and J. B. Pollack, “Symbiotic combination as an
alternative to sexual recombination in genetic algorithms,” in
Proceedings of the 2000 Parallel Problem Solving from Nature (PPSN),
2000.

[14] R. P. Wiegand, W. C. Liles, and K. A. D. Jong, “An empirical
analysis of collaboration methods in cooperative coevolutionary
algorithms,” in Proceedings of the 2001 Genetic and Evolutionary
Computation Conference (GECCO), 2001.

[15] R. P. Wiegand, “An analysis of cooperative coevolutionary algo-
rithms,” Ph.D. dissertation, George Mason University, Fairfax, VA,
USA, 2004.

[16] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary
approach to function optimization,” in Proceedings of the 3rd
Conference on Parallel Problem Solving from Nature (PPSN), 1994.

[17] F. M. Phil Husbands, “Simulated co-evolution as the mechanism
for emergent planning and scheduling,” in Proceedings of the 4th
International Conference on Genetic Algorithms (GA), 1991.

[18] M. A. Potter and K. A. D. Jong, “Evolving neural networks with
collaborative species,” in Proceedings of the 1995 Summer Computer
Simulation Conference, 1995.

[19] Z. Yang, J. Zhang, K. Tang, X. Yao, and A. C. Sanderson, “An
adaptive coevolutionary differential evolution algorithm for large-
scale optimization,” in Proceedings of the 2009 IEEE Congress on
Evolutionary Computation (CEC), 2009.

[20] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comp., vol. 16, no. 2,
pp. 210–224, 2012.

[21] H. M. de Almeida, M. A. Gonçalves, M. Cristo, and P. Calado,
“A combined component approach for finding collection-adapted
ranking functions based on genetic programming,” in Proceedings
of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), 2007.

[22] W. Fan, M. D. Gordon, and P. Pathak, “Discovery of context-
specific ranking functions for effective information retrieval using
genetic programming,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 4,
pp. 523–527, 2004.

[23] S. Wang, J. Ma, and J. Liu, “Learning to rank using evolutionary
computation: Immune programming or genetic programming?”
in Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM), 2009.

[24] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[25] P. Musilek, A. Lau, M. Reformat, and L. Wyard-Scott, “Immune
programming,” Inf. Sci., vol. 176, no. 8, pp. 972–1002, 2006.

[26] A. Moraglio and J. Togelius, “Geometric differential evolution,” in
Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation (GECCO), 2009, pp. 1705–1712.

[27] A. Moraglio and S. Silva, “Geometric differential evolution on
the space of genetic programs,” in Proceedings of the 13th European
Conference on Genetic Programming (EuroGP), 2010, pp. 171–183.

[28] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output vari-
ables,” J. Mach. Learn. Res., vol. 6, pp. 1453–1484, 2005.

[29] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya,
“Structured learning for non-smooth ranking losses,” in Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2008.

[30] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” Ann. Stat., vol. 29, no. 5, pp. 1189–1232, 2001.

[31] C. J. Burges, R. Ragno, and Q. V. Le, “Learning to rank with non-
smooth cost functions,” Proceedings of the 20th Annual Conference
on Neural Information Processing Systems (NIPS), pp. 193–200, 2007.

[32] W. Fan, E. A. Fox, P. Pathak, and H. Wu, “The effects of fitness
functions on genetic programming-based ranking discovery for
web search,” J. Am. Soc. Inf. Sci., vol. 55, no. 7, pp. 628–636, 2004.

[33] A. Trotman, “Learning to rank,” Inf. Retr., vol. 8, no. 3, pp. 359–
381, 2005.

[34] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images. New York, USA:
Van Nostrand Reinhold, 1994.

[35] D. Harman, Ranking Algorithms, ser. Information retrieval: Data
Structures and Algorithms Englewood Cliffs. New Jersey, USA:
Prentice Hall, 1992, pp. 363–392.

[36] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu,
and M. Gatford, “Okapi at trec-3,” in Proceedings of the 3th Text
REtrieval Conference (TREC), 1995.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

[37] T.-Y. Liu, “Learning to rank for information retrieval,” Found.
Trends Inf. Retr., vol. 3, no. 3, pp. 225–331, 2009.

[38] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of svms
for very large scale problems,” Neural Comput., vol. 14, no. 5, pp.
1105–1114, 2002.

[39] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik,
“Parallel support vector machines: The cascade SVM,” in Proceed-
ings of the 17th Annual Conference on Neural Information Processing
Systems (NIPS), 2004.

[40] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,”
in Proceedings of the 19th Annual Conference on Neural Information
Processing Systems (NIPS), 2006.

[41] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[42] S. Shukla, M. Lease, and A. Tewari, “Parallelizing ListNet train-
ing using Spark,” in Proceedings of the 35th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), 2012, pp. 1127–1128.

[43] D. X. De Sousa, T. C. Rosa, W. S. Martins, R. Silva, and M. A.
Gonçalves, “Improving on-demand learning to rank through
parallelism,” in Proceedings of the 13th International Conference on
Web Information Systems Engineering (WISE), 2012, pp. 526–537.

[44] Y. Liu, X. Yao, and T. H. Q. Zhao, “Cooperative co-evolutionary
differential evolution for function optimization,” in Proceedings
of the 1st International Conference on Natural Computation (ICNC),
2005.

[45] R. Storn and K. Price, “Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces,” J.
Global Optim., vol. 11, no. 4, pp. 341–359, 1997.

[46] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution:
A Practical Approach to Global Optimization. Springer Science &
Business Media, 2006.

[47] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evo-
lution with optional external archive,” IEEE Trans. Evol. Comput.,
vol. 13, no. 5, pp. 945–958, 2009.

[48] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution
with delta grouping for large scale non-separable function opti-
mization,” in Proceedings of the 2010 IEEE Congress on Evolutionary
Computation (CEC), 2010.

[49] S. E. Robertson, “Overview of the okapi projects,” J. Doc., vol. 53,
no. 1, pp. 3–7, 1997.

[50] C. Zhai and J. Lafferty, “A study of smoothing methods for
language models applied to Ad Hoc information retrieval,” in
Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), 2001.

[51] J. Parkin and B. Cohen, “An overview of the immune system,”
The Lancet, vol. 357, no. 9270, pp. 1777–1789, 2001.

[52] M. Cooper and M. Alder, “The evolution of adaptive immune
systems,” Cell, vol. 124, no. 4, pp. 815–822, 2006.

[53] L. N. de Castro and F. J. Von Zuben, “Learning and optimization
using the clonal selection principle,” IEEE Trans. Evol. Comput.,
vol. 6, no. 3, pp. 239–251, 2002.

[54] A. Ekárt and S. Z. Németh, “A metric for genetic programs and
fitness sharing,” in Proceedings of the 3rd European Conference on
Genetic Programming (EuroGP). Springer, 2000, pp. 259–270.

[55] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation
of IR techniques,” ACM Trans. Inf. Sys., vol. 20, no. 4, pp. 422–446,
2002.

Shuaiqiang Wang received Ph.D. and B.Sc. in
Computer Science from Shandong University,
China, in 2009 and 2004 respectively. Currently
he is an Assistant Professor at University of
Jyväskylä, Finland. Before that, He was an As-
sociate Professor at Shandong University of Fi-
nance and Economics, China from 2011 to 2014,
and a postdoctoral research associate at Texas
State University in 2010. His research interests
include information retrieval and data mining.

Yun Wu is currently an Engineer at Software
Development Center, Agricultural Bank of China.
He received M.Eng. and B.Sc. in Computer
Science from Shandong University, China, in
2014 and 2011 respectively. He was an Intern
at Baidu.com. His research interests include in-
formation retrieval, data mining, and machine
learning.

Byron J. Gao received Ph.D. and B.Sc. in Com-
puter Science from Simon Fraser University,
Canada, in 2007 and 2003 respectively. Cur-
rently he is an Associate Professor of computer
science at Texas State University. He joined
Texas State University in 2008. Before that, he
was a postdoctoral fellow at the Database Lab of
University of Wisconsin-Madison in 2007-2008.
His research spans several related fields includ-
ing data mining, databases, information retrieval,
and bioinformatics.

Ke Wang received Ph.D from Georgia Insti-
tute of Technology. He is currently a profes-
sor at School of Computing Science, Simon
Fraser University. Before joining Simon Fraser,
he was an associate professor at National Uni-
versity of Singapore. His research interests in-
clude database technology, data mining and
knowledge discovery, with emphasis on massive
datasets, graph and network data, and data pri-
vacy. He has published in database, information
retrieval, and data mining conferences, including

SIGMOD, SIGIR, PODS, VLDB, ICDE, EDBT, SIGKDD, SDM and ICDM.
He is currently an associate editor of the ACM TKDD journal and he was
an associate editor of the IEEE TKDE journal, an editorial board member
for DMKD, and a PC co-chair for SDM 2008. He is a general co-chair for
SDM 2015 and 2016.

Hady W. Lauw received his Ph.D. degree from
Nanyang Technological University, Singapore.
He is currently an Assistant Professor at School
of Information Systems, Singapore Management
University (SMU). Before joining SMU, he was
a Scientist in the Data Mining department of
A*STAR’s Institute for Infocomm Research. Ear-
lier on, he was a postdoctoral researcher with
Microsoft Research in United States. His re-
search interests include social network mining
and Web mining.

Jun Ma is a full professor of Shandong Univer-
sity. He received B.Sc., M.Sc. and Ph.D. from
Shandong University in China, Ibaraki University
and Kyushu University in Japan respectively. He
was a senior researcher at the department of
computer science of Ibaraki Univsity in 1994
and German National Research Center for In-
formation Technology from 2000 to 2003. His
research interests include information retrieval,
data mining and algorithms.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2015

	A Cooperative Coevolution Framework for Parallel Learning to Rank
	Shuaiqiang WANG
	Yun WU
	Byron J. GAO
	Ke WANG
	Hady Wirawan LAUW
	See next page for additional authors
	Citation
	Author

	tmp.1461132775.pdf.FIpYd

