5 research outputs found

    A Cooperative Approach to Sensor Localisation in Distributed Fusion Networks

    Get PDF
    We consider self-localisation of networked sensor platforms, which are located disparately and collect cluttered and noisy measurements from an unknown number of objects (or, targets). These nodes perform local filtering of their measurements and exchange posterior densities of object states over the network to improve upon their myopic performance. Sensor locations need to be known, however, in order to register the incoming information in a common coordinate frame for fusion. In this work, we are interested in scenarios in which these locations need to be estimated solely based on the multi-object scene. We propose a cooperative scheme which features nodes using only the information they already receive for distributed fusion: we first introduce node-wise separable parameter likelihoods for sensor pairs, which are recursively updated using the incoming multi-object information and the local measurements. Second, we establish a network coordinate system through a pairwise Markov random field model which has the introduced likelihoods as its edge potentials. The resulting algorithm consists of consecutive edge potential updates and Belief Propagation message passing operations. These potentials are capable of incorporating multi-object information without the need to find explicit object-measurement associations and updated in linear complexity with the number of measurements. We demonstrate the efficacy of our algorithm through simulations with multiple objects and complex measurement model

    Multisensor Poisson Multi-Bernoulli Filter for Joint Target-Sensor State Tracking

    Full text link
    In a typical multitarget tracking (MTT) scenario, the sensor state is either assumed known, or tracking is performed in the sensor's (relative) coordinate frame. This assumption does not hold when the sensor, e.g., an automotive radar, is mounted on a vehicle, and the target state should be represented in a global (absolute) coordinate frame. Then it is important to consider the uncertain location of the vehicle on which the sensor is mounted for MTT. In this paper, we present a multisensor low complexity Poisson multi-Bernoulli MTT filter, which jointly tracks the uncertain vehicle state and target states. Measurements collected by different sensors mounted on multiple vehicles with varying location uncertainty are incorporated sequentially based on the arrival of new sensor measurements. In doing so, targets observed from a sensor mounted on a well-localized vehicle reduce the state uncertainty of other poorly localized vehicles, provided that a common non-empty subset of targets is observed. A low complexity filter is obtained by approximations of the joint sensor-feature state density minimizing the Kullback-Leibler divergence (KLD). Results from synthetic as well as experimental measurement data, collected in a vehicle driving scenario, demonstrate the performance benefits of joint vehicle-target state tracking.Comment: 13 pages, 7 figure

    Message Passing and Hierarchical Models for Simultaneous Tracking and Registration

    Get PDF
    corecore