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A Cooperative Approach to Sensor Localisation in

Distributed Fusion Networks
Murat Üney, Member, IEEE, Bernard Mulgrew, Fellow, IEEE, Daniel E. Clark, Member, IEEE

Abstract—We consider self-localisation of networked sensor
platforms which are located disparately and collect cluttered and
noisy measurements from an unknown number of objects (or, tar-
gets). These nodes perform local filtering of their measurements
and exchange posterior densities of object states over the network
to improve upon their myopic performance. Sensor locations
need to be known, however, in order to register the incoming
information in a common coordinate frame for fusion. In this
work, we are interested in scenarios in which these locations
need to be estimated solely based on the multi-object scene.
We propose a cooperative scheme which features nodes using
only the information they already receive for distributed fusion:
we first introduce node-wise separable parameter likelihoods for
sensor pairs, which are recursively updated using the incoming
multi-object information and the local measurements. Second,
we establish a network coordinate system through a pairwise
Markov random field model which has the introduced likelihoods
as its edge potentials. The resulting algorithm consists of con-
secutive edge potential updates and Belief Propagation message
passing operations. These potentials are capable of incorporating
multi-object information without the need to find explicit object-
measurement associations and updated in linear complexity with
the number of measurements. We demonstrate the efficacy of our
algorithm through simulations with multiple objects and complex
measurement models.

Index Terms—cooperative localisation, multi-target tracking,
simultaneous localisation and tracking, sensor networks, graphi-
cal models, Monte Carlo algorithms, dynamical Markov random
fields.

I. INTRODUCTION

FUSION networks comprised of geographically dispersed

and networked sensor platforms are one of the key

enablers of wide area surveillance applications. These net-

works have the potential to enhance situational awareness

in a number of aspects including coverage, accuracy and

ease of deployment by providing ad-hoc deployability through

a reconfigurable and scalable system structure. The sensor

platforms have moderate sensing, computation and commu-

nication capabilities and energy resources (as opposed to

the rather stringent resource constraints of the commonly

considered wireless sensor networks). In order to monitor

an unknown number of objects (or, targets), they use sensor

signals with an inherently imperfect detection process and

obtain noisy measurements from a subset of the objects in
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their coverage and false detections from the surroundings, all

in their sensor centric coordinate system (SCCS). Given the

limited bandwidth of the links and the high energy cost of

communications, it is often not feasible to forward network

wide collected measurements to a designated centre which in

turn would have a high computational load [1].

Decentralised paradigms have more desirable properties in

fusion networks such as better resource utilisation and flexibil-

ity [2]. Typically, the nodes locally filter their measurements

to estimate the object trajectories. Then, they exchange the

filtered distributions with other nodes over the network to

improve upon the accuracy they achieve myopically based

on only their local measurements(e.g., [3]). These informa-

tion messages, however, can be combined only after they

are registered in a common coordinate system [4], e.g., the

local coordinate frame. Respective sensor locations constitute

a fundamental component of sensor registration parameters

that specify these coordinate transforms. Geographical routing

algorithms underpinning the communication network also rely

on a reasonably accurate knowledge of these locations [5].

We are interested in locating the sensors based solely on

measurements from the multi-object scene. Such a constraint

arise in a range of applications: For example, underwater

fusion networks cannot exploit global navigation space sys-

tems (GNSS) due to signal propagation constraints of their

environment [6]. In terresterial settings, GNSS might fail to

perform reliably considering their vulnerabilities to deliberate

interferences such as jamming [7]. The use of reference (or,

cooperative) vehicles [8] does not match well the flexibility

requirements. Another alternative which has been investigated

intensely is to use communication front-end and/or network

statistics such as received signal strength (RSS) and time of

arrival (TOA) [9]. Localisation based on RSS and TOA type

noisy distance measurements, however, is often not sufficiently

accurate for networks with the degree of connectivity typical

in fusion applications [10, Chp.6].

Our problem can be treated as a particular type of sensor

registration (or, calibration [11]) using targets of opportunity.

The latter topic has been investigated in the context of multi-

target tracking, however, mostly for mitigating biases of model

parameters [12]. The work which implicitly or explicitly ad-

dress locating sensors include solutions in centralised settings

based on conventional multi-target trackers [13], [14] and ran-

dom finite sets (RFS) based multi-target filtering [15], [16].

These work involve selection of either a maximum likelihood

(ML) or a Bayesian estimation paradigm and specifying the

parameter likelihood of the problem (see, e.g., [17, Sec.IV])

in accordance with the multi-object and measurement models.
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This likelihood, however, requires all the target measurements

collected across the network to be filtered together, and,

in turn, centralised processing. Distributed alternatives often

resort to joint filtering which embodies all the drawbacks

of centralised fusion, both in the case of ML [18] and

Bayesian [19] paradigms.

In this article, we propose a distibuted online self-

localisation scheme that avoids any form of centralisation

and operates alongside distribution fusion. The computational

structure is composed of iterative local message passings yield-

ing full decentralisation. The algorithm is developed in two

steps: First, we consider a pair of fusion sensors and develop

a calibration likelihood which can be computed based solely

on the multi-object distributions exchanged and local target

measurements. Specifically, we approximate the parameter

likelihood with a node-wise separable form which removes

the need for local centralisations.

Second, we merge these likelihoods in a pairwise Markov

random field (MRF) model which captures the communication

structure of the network. Such models are equipped with

estimation algorithms which operate in a message passing

fashion and have proved useful for distributed estimation [20]

and target tracking [21] applications in wireless sensor network

as well as self-localisation based on RSS measurements [22].

In our model, we use the proposed node-wise separable like-

lihoods as edge potentials [23]. These potentials have a time-

recursive structure as the respective parameters are indirectly

observed through measurements from a hidden process.

In the resulting scheme, nodes simultaneously perform

distributed fusion and update node-wise separable likelihoods

–equivalently, edge potentials– with their neighbours using

the incoming multi-object posteriors and local target mea-

surements. At the end of a fixed length time window, the

updated potentials are used in Belief Propagation (BP) [24]

message passing iterations. We accommodate and benefit from

the rich information from multiple targets of opportunity using

Poisson multi-object models [25] in the update recursions.

These models are propagated by local multi-object filters from

which our scheme inherits the capability of operating with

complex measurements involving false alarms and noisy mea-

surements of the objects with imperfect detection rates. The

potential updates feature linear complexity with the number

of measurements without any need to explicitly find target-

measurement associations.

The article is structured as follows: We provide the problem

statement in Section II. Then, we introduce a pairwise MRF

model for calibration and overview distributed estimation of

calibration marginals in Section III. In Section IV, we develop

node-wise separable likelihoods for calibration problems. We

combine these likelihoods with the MRF model introduced

and describe our collaborative scheme in Section V. We

detail a Monte Carlo (MC) algorithm for self-localisation in

Section VI and demonstrate its efficacy in Section VII. Finally,

we conclude in Section VIII.

II. PROBLEM STATEMENT

We consider networked sensor platforms listed

as V “ t1, ..., Nu. The communication links

available between pairs of sensors pi, jq specify the

edge set E Ă V ˆ V with respect to the relation

E “ tpi, jq|i and j share a communication linku. We assume

bidirectional communication links which is captured by using

an undirected graph G for which if pi, jq P E , then it holds

that pi, jq P E ô pj, iq P E . The neighbours of node i in

G constitute the set nepiq fi tj|pi, jq P Eu. The network

topology in G is connected and might contain cycles.

We employ widely used models for capturing complex

and uncertain interactions between sensors and an unknown

number of manoeuvring objects.

An object in the network surveillance region is described

by a state vector x in the state space X . Typically, x contains

the Cartesian coordinates of the object in an Euclidean plane

xl and its velocity xv, i.e., x “ rxl, xvs.

The evolution of a moving object’s state and the measure-

ment it induces are described by a hidden Markov model

(HMM). The state at time k is distributed according to the

density πpxk|xk´1q where xk´1 is the realisation of the

previous state with initial density π0px0q1. An observation

zk,j is generated at sensor j through a likelihood of the

form lpzk,j |xkq independently from other sensors.

Sensor likelihoods are specified by models that characterise

the detectors processing sensor signals. In multi-sensor set-

tings, it is useful to explicitly condition the likelihoods further

on calibration parameters which relate a given target state in a

desired reference frame to sensor readings. These parameters

might involve respective quantities such as the location and the

orientation of the sensors with respect to the reference frame,

as well as scale factors.

For example, consider a commonly used model involving a

nonlinear mapping of the target state with additive uncertain-

ties:

zk,j “ hjprxksjq ` nj (1)

where nj is a measurement noise realisation with probability

density gjpnjq, and, hj is a known mapping. Here, rxksj
denotes xk in the SCCS of the jth sensor. For a sensor

localisation problem,

rxlksj “ xlk ´ θj (2)

where θj is the sensor location and xlk is the position com-

ponent of the state vector xk, all represented in the reference

frame. The likelihood density for this model is then found as

ljpzk,j |xk; θjq “ gj
`

zk,j ´ hjprxksjq
˘

.

For more general calibration problems, it is useful to in-

troduce a transform from the reference frame to the SCCS of

sensor j parameterised by θj , i.e.,

rxksj “ τjpxk; θjq. (3)

For example, if the respective orientation angle αj in the plane

is unknown in addition to the location of sensor j, then it is

1The state transition could be time-dependant which is omitted here for
brevity.
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useful to consider the transform given by

τjpxk; θj “
“

αj , θ
l
j

‰

q “

«

Rpαjqpxlk ´ θljq

Rpαjqxvk

ff

, (4)

where Rpαjq is the rotation matrix for αj and θlj is the position

component of θj in the reference frame. The likelihood density

for this model is then

ljpzk,j |xk; θjq “ gj

´

zk,j ´ hj
`

τj pxk, θjq
˘

¯

. (5)

In practice, it is reasonable to assume that θj takes values

from a bounded set B Ă R
d of dimensionality d. For example,

d “ 2 when localisation in a plane is considered. Our goal is

to find these parameters

θ fi pθ1, ..., θN q

using local message passings on G and based on measurements

from the multi-object scene (or, targets of opportunity), models

for which are discussed next2.

Consider the set of realisations of Mk hidden processes

Xk fi tx1k, ..., x
Mk

k u at time k. A point x P Xk induces

a measurement at sensor j with probability PD,jpxq, inde-

pendently. Let us denote the set of measurements from the

objects at sensor j by Z̃
j
k. In addition to Z̃

j
k, sensor j collects

false detections from the surroundings, or clutter. We use a

Poisson process to model the clutter points, i.e., Cj is a

Poisson realisation denoted by Cj „ Poisp.;λC,j , sC,jpzqq
where λC,j is the average number of (Poisson distributed)

clutter points and sC,jpzq is their spatial density3. Therefore,

the set of measurements sensor j receives at time k is given by

Z
j
k “ Z̃

j
k Y Ck,j .

Sensor calibration, hence, involves finding the joint param-

eter likelihood relating the measurement histories tZj
1:kujPV

and θ, i.e., l
`

Z1

1:k, ..., Z
N
1:k|θ

˘

. We consider a random θ and

use this likelihood to update a prior distribution. Because θ

is bounded, a uniform prior p0pθq over BN can be used, and,

the posterior density is given by

ppθ|Z1

1:k, ..., Z
N
1:kq 9 p0pθq l

`

Z1

1:k, ..., Z
N
1:k|θ

˘

. (6)

We are interested in finding the minimum mean squared error

(MMSE) estimate of θ based on this posterior4.

A. Centralised sensor calibration

In the centralised estimation of θ, a designated centre has

access to all measurement histories tZj
1:kujPV to evaluate the

parameter likelihood

l
`

Z1

1:k, ..., Z
N
1:k|θ

˘

“
k´1
ź

t“0

p
`

Z1

t`1
, ..., ZN

t`1
|Z1

1:t, ..., Z
N
1:t, θ

˘

,
(7)

2The neighbourhood structure of G does not necessarily replicate the
distance relations among θjs.

3Note that, it is possible to use a non-stationary Poisson process model for
the clutter. Here, we omit dependency to time for brevity.

4The MMSE estimate is often easier to compute compared to, for example,
the maximum a posteriori (MAP) estimation rule. We note that the MMSE
solution approximates the MAP one reasonably well in the case of convex,
unimodal distributions. The latter is also equivalent to using this likelihood
in a ML paradigm (e.g., [18]), in the case of uniform priors.

where the factorisation follows from the chain rule of prob-

abilities [17, Sec.IV]. The factors in the right hand side

(RHS) are independent contributions of the measurement sets

collected at each time step. The Markov property of the hidden

object processes admit that the current measurements are

conditionally independent of the measurement histories, given

the current object states and the sensor locations. Using this

relation together with the (conditional) mutual independence

of measurements across the sensors, the instantaneous contri-

bution of measurements collected at t` 1 to the likelihood at

k is found as [17]

p
`

Z1

t`1
, ..., ZN

t`1
|Z1

1:t, ..., Z
N
1:t, θ

˘

“
ż

ppZ1

t`1
, ..., ZN

t`1
|Xt`1, θqppXt`1|Z1

1:t, ..., Z
N
1:t, θqdXt`1,

“
ż

`

N
ź

j“1

ppZj
t`1

|Xt`1, θjq
˘

ppXt`1|Z1

1:t, ..., Z
N
1:t, θqdXt`1,

(8)

where the product term inside the integral is the multi-sensor

likelihood. The second term is a prediction density for the

multi-object scene at time t` 1 based on the network history

until t, and, can be found by the Bayesian filtering recursions,

i.e., it is output at the prediction step of a “centralised” filter.

In addition to the difficulties in collecting Z
j
1:ks at a

designated fusion centre under resource constraints, the es-

timator obtained by substituting from (8) to (7) and (6)

inherits the computational issues related to both multi-sensor

filtering and parameter estimation in state space models: The

centralised filter needed for the realisation of (8) faces the

same computational complexity issues which are encountered

in multi-object filtering and which are exacerbated in the

case of multiple sensors5. The usual non-Gaussian/non-linear

dynamics involved in such problem settings suggest Sequential

Monte Carlo (SMC) methods to be used as a computational

paradigm, and, in the case of parameter estimation problems

including calibration, iterative sampling strategies with rela-

tively high computational and memory complexities should

be used to achieve reasonably accurate estimates [28]. Thus,

the described centralised solution suffers from poor scalability

with the number of sensors and objects.

We circumvent these problems through a number of mod-

elling approximations introduced in the rest of this article, and

provide a distributed scheme with efficient local computations.

B. Distributed fusion architecture and information exchange

Each sensor platform locally filters its measurement his-

tory and maintains a local representation of its environment

including the multi-object state Xk. There is no restriction

on the multi-object models and inference algorithms used by

these platforms. The neighbouring nodes in G exchange their

representations to improve upon their myopic accuracy. As

far as our self-localisation (calibration) scheme is concerned,

the only requirement is that a Poisson RFS approximation

of Xk is available from the information received. In other

words, the neighbours provide –directly or indirectly– a model

5See, for example, the related discussions in [26] and [27] in the cases of
hypothesis based and RFS models, respectively.
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in which Xk is a realisation of a Poisson RFS conditioned

on the sensor history, i.e., Xk „ Poisp.;λk|k, sk|kpxqq, which

first draws Mk from a Poisson distribution with parameter

λk|k and then generates Mk points from sk|kpxq. Hence, Xk

evaluates its density as

fpXkq “ e´λk|kλMk

k|k

ź

xPXk

sk|kpxq (9)

where the product selects each element only once.

Poisson multi-object models are provided directly by the

Probability Hypothesis Density (PHD) filter [29]. In the case

that another RFS model is provided (from filtering algorithms

such as the Cardinalised PHD [30], labelled [31] and varia-

tional [32] multi-Bernoulli filters), a best Poisson approxima-

tion can be found using the first order statistical moment of

this distribution [25]. More conventional algorithms such as

multiple hypothesis tracking (MHT) consider hypotheses on

measurement object correspondances, on the other hand, and

find the likelihood of these association hypotheses together

with single object posteriors. This form of information is

convertible to RFS distributions [33] from which Poisson

multi-object models can readily be obtained.

Besides that they can be obtained from a wide range of

trackers, there are additional appealing features of Poisson

multi-object models: because they are RFS models, the corre-

sponding sensor likelihoods evaluate without the need to ex-

plicitly find measurement-object associations [25, Eq.(12.41)].

Moreover, marginalisations over the state variable as in the

RHS of (8) have closed form expressions and can be computed

using Monte Carlo methods with linear complexity in the

number of measurements for a single sensor. These features

of multi-object scalability are later combined with the MRF

model we introduce in Sections III and IV for multi-sensor

scalability.

III. A DYNAMIC PAIRWISE MARKOV RANDOM FIELD

MODEL FOR CALIBRATION

In this section, we introduce an approximation to the

centralised estimator (Eq.s(8),(7) and (6)) which enables the

estimation of θ in a distributed fashion, through local message

passing operations.

We consider a parsimonious representation for the calibra-

tion posterior in (6). Specifically, we assume that θ is Markov

with respect to the communication topology G, i.e., if the

sets of nodes A and B are separated by C on G, then the

random variables associated with A, i.e., θA “ tθi|i P Au, and

θB are conditionally independent given θC . This conditional

independence relation is often denoted by θA KK θB|θC [23].

All such relations admitted by G factorise (6) to positive func-

tions (or, potential functions) over the cliques of G (connected

subsets of V) [23].

The distributed fusion architecture discussed in Section II-B

involves nearest neighbour multi-object posterior exchanges.

Consequently, the local information available at the nodes are

related to the respective locations of pairs of (neighbouring)

sensors. Therefore, we take into account only the singleton

and two-node cliques and use a pairwise MRF model

p̃pθ|Z1

1:k, ..., Z
N
1:kq 9

ź

iPV

ψipθiq
ź

pi,jqPE

ψk
ijpθi, θjq, (10)

ψipθiq “ p0,ipθiq,

ψk
ijpθi, θjq “ lpZi

1:k, Z
j
1:k|θi, θjq,

where the node potential functions ψis are arbitrary priors for

θi (e.g., uniform distributions over B) and the edge potentials

ψk
ijs are predictive parameter likelihoods for the pairs pi, jqs

based on sensor histories up to time k. These edge potentials

have the time-recursive structure in (7), i.e.,

ψk
ijpθi, θjq“

k´1
ź

t“0

ppZi
t`1

, Z
j
t`1

|Zi
1:t, Z

j
1:t, θi, θjq

“ ψk´1

ij pθi, θjqppZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi, θjq,(11)

and render a dynamical MRF.

One challenge in calibration using this model in distributed

fusion networks is the computation of ψk
ijs in a distributed

fashion, without communicating Zi
ks. Another issue is the

computational load even if the measurements could be ex-

changed among the neighbouring nodes. We introduce node-

wise separable likelihoods to tackle these challenges later in

Section IV. Next, we give a brief outline of decentralised

estimation in sensor networks based on pairwise MRFs.

A. Decentralised Estimation Using Belief Propagation

Consider the MMSE parameter estimator based on the joint

posterior in (10). This can be decomposed as a concatenation

of the MMSE estimates of θis based on the marginal distribu-

tions. The pairwise MRF model in (10) allows the computation

of the marginal densities through iterative local message pass-

ings such as Belief Propagation (BP) [24], when G contains

no cycles. Specifically, the nodes maintain distributions over

their local variables and update them based on messages from

their neighbours which summarise the information neighbours

have gained on these variables. This is described by the set of

equations

mjipθiq “

ż

ψk
ijpθi, θjqψjpθjq

ź

i1Pnepjqzi

mi1jpθjqdθj , (12)

p̃ipθiq “ kiψipθiq
ź

jPnepiq

mjipθiq, (13)

for all i P V , where kis are scale factors ensuring that p̃ipθiqs

integrate to unity.

The fixed points of the set of equations above are the

marginals of (10) in the case of a cycle-free G. In BP iterations,

nodes simultaneously send messages to their neighbours using

(12) (often starting with constants as the previously received

messages) and update their local “belief” using (13). If G

contains no cycles, p̃is are guaranteed to converge to the

fixed points, i.e., the marginals of (10), in a finite number

of steps [24].

For the case in which G contains cycles, message and update

equations are still well defined. BP iterations on loopy graphs,

however, are not guaranteed to convergence to an equilibrium,

in general [23, Sec.4]. The fixed points of Eq.s (13) and (12),

if they exist, are often not equal to the marginals of the
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DpppZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq||qpZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jqq

“ IpZj
k;Z

j
1:k´1

|Zi
1:k´1

, θi,jq ` IpZi
k;Z

i
1:k´1

|Zj
1:k´1

, θi,jq ` IpZi
k;Z

j
k|Zi

1:k´1
,Z

j
1:k´1

, θi,jq, (18)

ď HpXk|Zi
1:k´1

, θi,jq `HpXk|Zj
1:k´1

, θi,jq ´HpXk|Zi
1:k´1

,Z
j
1:k´1

, θi,jq

´maxtHpXk|Zi
k,Z

i
1:k´1

,Z
j
1:k´1

, θi,jq, HpXk|Zj
k,Z

i
1:k´1

,Z
j
1:k´1

, θi,jqu. (19)

global distribution, but reside in vicinities of them. Additional

details on the convergence of BP on graphs with cycles can

be found in [23] and the references therein. Loopy versions of

BP has been very successful in finding approximate marginal

distributions in many applications including fusion problems

in sensor network (see, for example [20], and the references

therein).

As a result, we distribute the calibration task over the

network by using BP iterations to compute the marginals of

(10) (exactly or approximately, in the cases of tree or loppy

structured Gs, respectively). Since the neighbours in G share

a communication link, the messages of BP map directly onto

the communication network and the ith sensor localises itself

using, e.g., the MMSE rule, with its local marginal.

The next step involves the challenge of designing efficient

computational procedures for approximating the edge poten-

tials of the pairwise MRF model, which is discussed next.

IV. NODE-WISE SEPARABLE EDGE POTENTIALS

The MRF model in (10) and (11) does not readily allow for

distributed calibration because the potential functions are the

centralised likelihoods for sensor pairs (i.e., Eq.s (7) and (8)

for sensors i and j). We overcome this problem by intro-

ducing an approximation for the instantaneous likelihood, or,

update, term in the RHS of (11) which can be computed

in a distributed fashion. This approximation has a node-wise

separable form as a product of terms based on locally avail-

able information such as multi-object models received from

the neighbours (for example, posterior multi-object Poisson

distributions) and locally collected measurements of the multi-

object scene. Specifically, we approximate the edge potential

with a product of the form

ψ̃k
ijpθi, θjq “ lkijpθi, θjqlkjipθi, θjq (14)

where lkij is computed at node i in a recursive fashion and

based on only Zi
1:k and the incoming posteriors from sensor

j and vice versa.

Let us consider the update term in the RHS of (11) and

denote the pair pθi, θjq by θi,j . This term can be further

factorised in alternative ways as follows:

ppZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq

“ ppZi
k|Zj

k, Z
i
1:k´1

, Z
j
1:k´1

, θi,jqppZj
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq

“ ppZj
k|Zi

k, Z
i
1:k´1

, Z
j
1:k´1

, θi,jqppZi
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq

“
´

ppZi
k|Zj

k, Z
i
1:k´1

, Z
j
1:k´1

, θi,jqˆ

ppZj
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq
¯1{2

ˆ
´

ppZj
k|Zi

k, Z
i
1:k´1

, Z
j
1:k´1

, θi,jqˆ

ppZi
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq
¯1{2

(15)

In the first and second lines above, the chain rule is used

and the third equality follows from taking the geometric mean

of the first two expressions. The conditioning of these factors

to the measurement histories of both sensors prevents decen-

tralisation. An alternative is to approximate the four factors in

Eq.(15) by leaving out the history of sensor i (sensor j) in

conditioning of the first and last (second and third) terms of

(15) together with any current measurements, i.e.,

qpZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq

fi
1

κ

´

ppZi
k|Zj

1:k´1
, θi,jqppZj

k|Zi
1:k´1

, θi,jq
¯1{2

ˆ
´

ppZj
k|Zi

1:k´1
, θi,jqppZi

k|Zj
1:k´1

, θi,jq
¯1{2

“ ppZi
k|Zj

1:k´1
, θi,jqppZj

k|Zi
1:k´1

, θi,jq (16)

ppZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq «

qpZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq (17)

where κ above is the normalisation constant and it can easily

be shown that κ “ 1.

The appeal of this approximation is that its factors depend

on single sensor histories allowing us to avoid centralisation.

The computation of these factors in terms of local information

and incoming multi-object posteriors from the neighbours and

the utilisation of the update in (17) in a message passing

scheme are detailed in Section V. Now, we consider the

approximation quality in terms of the Kullback-Leibler (KL)

divergence [34] between the centralised update term in the left

hand side (LHS) of (17) with respect to its approximation on

the RHS:

Proposition 4.1: The KL divergence between the centralised

update in (8) and the node-wise separable approximation in

(16) equals to a sum of Mutual Information (MI) [34] terms

given in (18).

Proof. See Appendix A. �

The first two MI terms in Proposition 4.1 measure the

departure of the current measurement and the sensor history

from conditional independence when they are conditioned on

the other sensor history instead of the current state Xk for

which Z
i
k KK Z

i
1:k´1

|Xk, θi,j and Z
j
k KK Z

j
1:k´1

|Xk, θi,j

hold leading to

IpZi
k;Z

i
1:k´1

|Xk, θi,jq “ IpZj
k;Z

j
1:k´1

|Xk, θi,jq “ 0.

The third term is a measure of departure from conditional

independence for the current measurements given the mea-

surement histories. Therefore, the RHS of (18) is zero

if Z
i
k,KKZ

i
1:k´1

|Zj
1:k´1

, θi,j and Z
j
k KK Z

j
1:k´1

|Zi
1:k´1

, θi,j

hold together with Z
i
k KK Z

j
k|Zi

1:k´1
,Z

j
1:k´1

, θi,j simultane-

ously. This condition is satisfied, for example, in the case that

either of the measurement histories Z
i
1:k´1

and Z
j
1:k´1

are
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sufficient statistics for Xk and the true state can be predicted

by both sensors with probability one. One should not expect

this level of prediction accuracy in realistic tracking scenarios,

therefore, it is instructive to relate the KL divergence in (18)

further to the uncertainty on Xk given the sensor histories.

Corollary 4.2: The KL divergence term in (18) is upper

bounded by the difference between the total local state pre-

diction entropies and the entropies of the joint prediction and

its most uncertain single sensor update given in (19) with H

denoting the Shannon Entropy [34].

Proof. See Appendix B. �

Corollary 4.2 relates the approximation quality of the node-

wise separable updates to the uncertainties in the object state

prediction and estimation. The first two terms in the RHS

of (19) measure the uncertainties in the locally predicted object

states. Subtracted from their sum are the uncertainty in the

joint prediction based on the histories of both of the sensors

and the entropy of the single sensor update upon the joint

prediction that has the highest value. Therefore, a better quality

of approximation should be expected as the local prediction

densities become more concentrated around a single point in

the state space.

Consider, for example, range-bearing sensors providing

noisy measurements of object positions in polar coordinates.

Tracking filters can provide fairly accurate predictions and

estimates of object locations and velocities using typical

measurements and with increasing k. This in turn results

with smaller values for the bound in (19). An alternative in

which these conditions cannot be satisfied with guarantees is a

bearing-only sensor scenario consisting of a single object and

two identical sensors. Suppose that the object moves along

the line-of-sight (LOS) of one of the sensors. The local target

prediction as well as the posterior distribution at time k will

typically have a probability mass spread around the line-of-

sight. The amount of this spread, which can be measured by

the entropy H , will drop significantly when state distributions

are conditioned also on the other sensor’s history [35] yielding

a large value for (19).

The use of the node-wise separable term in (16) to update

the dynamic MRF edge potentials given by (11) leads to the

following recursive formulae:

ψ̃k
ijpθi, θjq “ ψ̃k´1

ij pθi, θjqqpZi
k, Z

j
k|Zi

1:k´1
, Z

j
1:k´1

, θi,jq,

“
k´1
ź

t“0

ppZi
t |Z

j
1:t´1

, θi,jqppZj
t |Zi

1:t´1
, θi,jq,

“ lkijpθi, θjqlkjipθi, θjq, (20)

where the node-wise terms in (14) are the products of individ-

ual node-wise separable update factors over time defined in a

recursive fashion:

lkijpθi, θjq fi lk´1

ij pθi, θjqppZi
k|Zj

1:k´1
, θi,jq, (21)

lkjipθi, θjq fi lk´1

ji pθi, θjqppZj
k|Zi

1:k´1
, θi,jq. (22)

Here, subscript ij indicates that the associated term is com-

puted at sensor i and will be transmitted to sensor j and

vice versa.

V. THE COOPERATIVE CALIBRATION SCHEME

In this section, we describe the cooperative calibration

scheme based on the node-wise separable edge potentials.

First, in order to facilitate online processing within the

Bayesian paradigm, the measurement histories are partitioned

into time windows of length T , and, θ is evolved with

artificial dynamics between two consecutive windows leading

to prediction-update cycles [28]. Let us denote the nth window

of sensor j by Zj
n fi Z

j

pn´1qT`1:nT
. A recursive rule is, then,

given by

pnpθn|Z1

0:n, ...,Z
N
0:nq9

lpZ1

n, ...,Z
N
n |θnqpn|n´1pθn|Z1

0:n´1
, ...,ZN

0:n´1
q, (23)

pn|n´1,ipθn,i|Z
1

0:n´1
, ...,ZN

0:n´1
q “

ż

βnpθn,i|θn´1,iqpn´1,ipθn´1,i|Z
1

0:n´1
, ...,ZN

0:n´1
qdθn´1,i,

(24)

for i “ 1, ..., N where subscript i denotes the ith marginal.

In the second line we apply dynamics to the single sensor

parameters θn´1,i independently which is specified by the con-

ditional density βnpθn,i|θn´1,iq. βn models (small) Brownian

motion steps, i.e.,

βnpθn,i|θn´1,iq “ N pθn,i ´ θn´1,i;0,Dnq, (25)

where N is a multi-dimensional Gaussian with an all zero

mean vector. Dn “ diagpσ2

n,1, ..., σ
2

n,dq is a d ˆ d diagonal

covariance matrix and σn,1, ..., σn,d are the Brownian motion

parameters specifying the step sizes in each direction. Conse-

quently, the prior distibution in (23) becomes the product of

these marginals, i.e.,

pn|n´1pθn|Z1

0:n´1
, ...,ZN

0:n´1
q “

ź

iPV

pn|n´1,ipθn,i|Z
1

0:n´1
, ...,ZN

0:n´1
q.

The prediction step in (24) can already be performed locally.

The discussion in Sections III and IV relates to the update step

in (23). In other words, we replace (23) with

p̃npθn|Z1

0:n, ...,Z
N
0:nq9

ź

pi,jqPE

ψ̃k
i,jpθn,i, θn,jq

ź

iPV

pn|n´1,ipθn,iq. (26)

We describe the cooperative update of the marginal distri-

butions for a time-window of length T . Then, these steps are

repeated in consecutive time windows.

The conceptual steps followed at platform i is given as

pseudo-code in Algorithm 1. Initially, platform i specifies an a

priori distribution over its calibration parameters and the multi-

object scene. Here, k becomes a time index for traversing the

current window n. In an infinite loop, platform i proceeds with

distributed fusion by first collecting measurements from the

multi-object scene and filtering them to find the local multi-

object density fipXk|Zi
1:kq. This density is exchanged with

the neighbouring platforms and then fused with the incoming

state densities from the neighbours.

For cooperative calibration, the local node-wise update term

ppZi
k|Zj

1:k´1
, θi,jq is found for all neighbours j P nepjq. The
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Algorithm 1 Pseudo-code for fusion node i in the cooperative calibration scheme.

1: Specify p1|0,ipθiq, fipX0q,T , S

2: n Ð 1, k Ð 1

3: Exchange θ̂i “ Ep1|0,i
tθiu s with j P nepiq

4: while 0 do

5: Collect measurements and store in Zi
k

6: Filter Zi
k
and find the Poisson multi-object density fipXk|Zi

1:k
q Ź Local filtering

7: Exchange fipXk|Zi
1:k

q s with j P nepiq Ź Distributed fusion 1

8: Fuse fipXk |Zi
1:k

q and fjpXk |Zj

1:k
qs using θ̂i and θ̂js Ź Distributed fusion 2

9: Find ppZi
k

|Zj

1:k´1
, θi,jq using Zi

k
and fjpXk´1|Zj

1:k´1
q for all j P nepiq Ź Eq.s(27) and (29)

10: Update lkij with ppZi
k

|Zj

1:k´1
, θi,jq for all j P nepiq Ź Eq.(21)

11: if k “ T then

12: Exchange lkij s with j P nepiq

13: Find ψ̃k
ij for j P nepiq Ź Eq.(14)

14: Perform loopy BP for S steps to find p̃n,ipθiq Ź Eq.s(12) and (13) to estimate the ith marginal of (26).

15: Exchange θ̂i “ Ep̃n,i
tθiu s with j P nepiq

16: pn`1|n,i Ð p̃n,i ˚ N p.;0,Cnq Ź Brownian motion (Eqs.(24) and (25))

17: fipX0q Ð fipXk |Zi
1:k

q

18: k Ð 0, n Ð n ` 1

19: end if

20: k Ð k ` 1

21: end while

computation is carried out in two steps: First, based on the

Poisson density received at k ´ 1, i.e.,

fjprXk´1sj|Zj
1:k´1

q “ PoisprXk´1sj;λk´1,j , sk´1,jprxsjqq,

the corresponding prediction density is found. Here, we ex-

plicitly indicate that the argument of the incoming density is

in the SCCS of sensor j. Poisson predictions often incorporate

a probability for an object with state x to continue to exist at

the next time step denoted by PSpxq. The predicted Poisson

model is characterised by [25]

λk|k´1,jpθi,jq “ λk´1,j

ż

PSpτi ˝ τ´1

j px; θi,jqq ˆ

sk´1,jpxqdx,

sk|k´1,jprxsi; θi,jq 9
ż

πprxsi|τi ˝ τ´1

j px1; θi,jqq ˆ

PSpτi ˝ τ´1

j px1; θi,jqqsk´1,jpx1qdx1, (27)

where π is the Markov transition modelling object motion

(Section II). Here, the integral variables are in the jth SCCS

and the composite function τi ˝ τ´1

j transforms its argument

in the jth SCCS to its counterpart in the ith SCCS given the

calibration parameters θi,j .

The predictive Poisson model fjpXk|Zj
1:k´1

; θi,jq specified

by (27) has its Xk argument in the ith SCCS. As a second

step, the node-wise update term is computed based on this

predictive density and the current measurements. Using the

conditional independence relation Z
i
k KK Z

j
1:k´1

|Xk , it can

easily be shown that

ppZi
k|Zj

1:k´1
, θi,jq “

ż

ppZi
k|XkqfjpXk|Zj

1:k´1
; θi,jqδXk,

(28)

where the integral variable is set valued and (28) is a set

integral (see Appendix C for an overview of such integrals).

In addition, the RHS of (28) takes a simple form for a Poisson

fj and the sensor measurement model described in Section II.

In particular,

ppZi
k|Zj

1:k´1
, θi,jq “

exp
´

´λC,i ´ λk|k´1,jpθi,jq
ż

PD,ipxq sk|k´1,jpx; θi,jqdx
¯

ˆ

ź

zPZi
k

˜

λC,isC,ipzq ` λk|k´1,jpθi,jq ˆ

ż

PD,i pxq li pz|xq sk|k´1,jpx; θi,jqdx

¸

, (29)

where subscript i denotes that the quantity belongs to the

measurement model of node i (see, e.g., [36, Proposition

11.3], [29, Eq.(116)], or [16, Eq.(8)]). This term is then used

to update the likelihood factor lkij in (21).

At the end of the time window of length T , the node-

wise terms are exchanged with the neighbouring nodes and

the edge potentials are constructed using (14). Then, S steps

of loopy BP is performed using (12) and (13) to estimate

the ith local marginal density of the MRF calibration model

in (26). In the next step, the expected value of this marginal is

found which becomes the current estimate of the parameters,

and is exchanged with the neighbours. Before proceeding

with the next time window, the local parameter distribution is

convolved with a zero mean Gaussian realising the Brownian

motion step given by (24) and (25).

It is worth noting that (28) is valid for arbitrary sensor

coverages: If different sensor pairs observe different targets

in common due to partially overlapping coverages, it suffices

to select the probability of detection PD,ipxq embedded in

the likelihood term as zero outside the coverage. The explicit
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evaluation given by (29), however, is valid when there are no

targets observed by sensor i but not by sensor j. For arbitrary

coverages, (29) would have the same form with the spurious

measurement model (i.e., the terms related to clutter) adapting

to include observations from those targets in the coverage of

sensor i but not j. Further elaboration on this case remains as

future work. For the rest of this article, we restrict our attention

to the setting in which all sensors observe the same targets.

VI. COOPERATIVE SENSOR SELF-LOCALISATION USING

MONTE CARLO METHODS

This section describes a realisation of the cooperative cal-

ibration scheme introduced in the previous section for sensor

self-localisation using Monte Carlo methods. Central to the

realisation of the conceptual procedure in Algorithm 1 are

particle representations of the continuous densities involved

and approximate computations which in turn require slight

modifications to the original steps.

For sensor self-localisation, we consider a co-planar net-

work and the respective calibration parameters as the sensor

locations in a network coordinate system. An arbitrary node

is selected as the centre of the network coordinate frame. For

example, the SCCS of node 1 can be selected as the reference

by setting θ1 “ r0, 0sT , without loss of generality. Thus, the

transform in (2) maps the points in the 1st SCCS to their jth

SCCS counterparts.

Consider the pair pi, jq P E . The composite function τi˝τ
´1

j

appearing in (27) is found as

rxsi “ τi ˝ τ´1

j prxsj ; θi, θjq

“ rxsj ´ θi ` θj . (30)

Local filtering can be performed using, for example,

Sequential Monte Carlo methods [37] within the filtering

approaches discussed in Section II-B such as Sequential

Monte Carlo realisations of RFS filters [38]. Using its lo-

cal filter, node j will have transmitted an approximation to

Poisp.;λk´1,j , sk´1,jpxqq specified by an estimate λ̂k´1,j for

the expected number of objects and a weighted set of inde-

pendent, identically distributed (i.i.d) samples (or, particles)

tx
pmq
k´1,j , ζ

pmq
k´1,juMm“1

that encode an empirical distribution

given by

Ŝk´1,jpdxq “
M
ÿ

m“1

ζ
pmq
k´1,jδxpmq

k´1,j

pdxq, (31)

where δx is the Dirac measure concentrated at x.

The predictive Poisson model in (27) is then approximated

by substituting the empirical distribution in (31) together

with λ̂k´1,j into (27), and using the Monte Carlo integration

principle [39, Chp.3]. This is akin to the prediction stage of

the Sequential Monte Carlo PHD filter [40] and the resulting

approximation (also considering (30)) is given by

λ̂k|k´1,jpθi,jq “ λk´1,j

ÿ

m

ζ
pmq
k´1,jPSpx

pmq
k´1,j ´ θj ` θiq,

Ŝk|k´1,jpdx; θi,jq “
ÿ

ζ
pmq
k|k´1,j

δ
x

pmq
k|k´1,j

pdxq, (32)

x
pmq
k|k´1,j

„ πpx|x
pmq
k´1,j ´ θj ` θiq,

ζ
pmq
k|k´1,j

“
ζ

pmq
k´1,jPSpx

pmq
k´1,j ´ θj ` θiq

ř

m1 ζ
pm1q
k´1,jPSpx

pm1q
k´1,j ´ θj ` θiq

.

The update term in (29) is computed using these quantities

which yields

p̂pZi
k|Zj

1:k´1
, θi,jq “

exp

˜

´λC,i ´ λ̂k|k´1,jpθi,jq
ÿ

m

ζ
pmq
k|k´1,j

PD,ipx
pmq
k|k´1,j

q

¸

ˆ

ź

zPZi
k

˜

λC,isC,ipzq ` λ̂k|k´1,jpθi,jq ˆ

ÿ

m

ζ
pmq
k|k´1,j

PD,i

´

x
pmq
k|k´1,j

¯

li

´

z|x
pmq
k|k´1,j

¯

¸

. (33)

The likelihood update ppZi
k|Zj

1:k´1
, θi,jq local to node i can

only be estimated for a finite set of θi,j values which in turn

will be used to estimate the node-wise likelihood term lkij . It

is beneficial to use the same set of parameter values at node

j in order to estimate lkji as the edge potential ψ̃k
ij , then, can

be found by simply taking the product of these estimates. For

this reason, we generate L equally weighted samples from

pn|n´1,ipθiq and pn|n´1,jpθjq, and, obtain tθ
plq
n|n´1,i

uLl“1
and

tθ
plq
n|n´1,j

uLl“1
, respectively6. We use the concatenation of these

values, i.e.,

θ
plq
i,j fi r

´

θ
plq
n|n´1,i

¯T

,
´

θ
plq
n|n´1,j

¯T

sT , (34)

in computing (33) at both node i and j.

In order to construct (34), the nodes exchange their local

particle sets representing pn|n´1,ipθiqs as an additional com-

munication step to Algorithm 1, before starting to process a

new time window. Thus, at each time step k within the win-

dow, the update term (33) is computed for all tθ
plq
i,juLl“1

and for

all j P nepiq in order to update tl̂ki,jpθ
plq
i , θ

plq
j quLl“1

. At the last

step of the time window k “ T , the estimated node wise terms

are exchanged and the edge potentials tψ̂k
i,jpθ

plq
i , θ

plq
j quLl“1

are

found by simply taking the element-wise product of the node-

wise separable terms (Eq.(14)).

The loopy BP realisation with these edge potentials follows

the non-parametric BP (NBP) approach [41] and represents

both the messages in (12) and the local marginals in (13) by

particle sets.

First, we describe the message computations: Consider (12)

for the MRF model in (26) and suppose that i.i.d samples from

the (scaled) product of the jth local prior and the incoming

messages from all neighbours except i are given, i.e.,

θ̄
plq
j „ pn|n´1pθjq

ź

i1Pnepjq{i

mi1jpθjq for l “ 1, ..., L. (35)

Based on these samples, the message from node j to i

(scaled to one) is approximated by a smoothed density es-

timate in NBP [41]. We use Gaussian kernels leading to the

6The particle weights are equal to 1{L for the case and omitted in the
notation for the simplicity of exposition.
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approximation given by

m̂jipθiq “
L

ÿ

l“1

ω
plq
ji N pθi; θ

plq
ji ,Λjiq, (36)

θ
plq
ji “ τ´1

i ˝ τjpθ̄
plq
j ; θ

plq
i , θ

plq
j q

“ θ̄
plq
j ` θ

plq
i ´ θ

plq
j ,

ω
plq
ji “

ψ̂k
i,jpθ

plq
i , θ

plq
j q

řL

l1“1
ψ̂k
i,jpθ

pl1q
i , θ

pl1q
j q

,

where the kernel weights are the normalised edge potentials.

Λji is related to a bandwidth parameter that can be found using

Kernel Density Estimation (KDE) techniques. In particular, we

use the rule-of-thumb method in [42] and find

Λji “ p5{4Lq´1{3
Ĉji,

Ĉji “
ÿ

l1

ÿ

l

ω
pl1q
ji ω

plq
ji pθ

pl1q
ji ´ m̂jiqpθ

plq
ji ´ m̂jiq

T ,

m̂ji “
L

ÿ

l“1

ω
plq
ji θ

plq
ji

where m̂ji and Ĉji are the empirical mean and covariance of

the samples, respectively.

Second, we consider sampling from the updated marginal in

(13) for the MRF in (26). We use the weighted bootstrap, or,

sampling/importance resampling, approach [43] with samples

generated from the (scaled) product of Gaussian densities

with mean and covariance equal to the empirical mean and

covariance of the particle sets, respectively. In other words,

given m̂ji and Ĉji as above, we generate

θ
plq
i,β „ βpθiq, l “ 1, ¨ ¨ ¨ , L,

βpθiq 9 N pθi; m̂n|n´1,i, Ĉn|n´1,iq
ź

jPnepiq

N pθi; m̂ji, Ĉjiq.

The particle weights for these samples to represent the

updated marginal is given by

ω
plq
i,β “ ω̂

plq
i,β{

L
ÿ

l1“1

ω̂
pl1q
i,β

ω̂
plq
i,β “

´

p̂n|n´1,ipθ
plq
i,βq

ź

jPnepiq

m̂jipθ
plq
i,βq

¯

{βpθ
plq
i,βq

where p̂n|n´1,i is a KDE found using tθ
plq
n|n´1,i

uLl“1
with

the rule-of-thumb method described above7. Thus, the local

calibration marginal is estimated by

P̂n,ipdθiq “
L

ÿ

l“1

ω
plq
i,βδθplq

i,β

pdθiq. (37)

As the final step of the bootstrap, tθ
plq
i,β , ω̂

plq
i,βuMl“1

is resam-

pled (with replacement) leading to equally weighted particles

from pn,ipθiq, i.e., tθ
plq
n,iu

L
l“1

. We follow similar bootstrap steps

in order to generate the samples in (35).

After nodes iterate the BP computations described above

for S times, each node estimates its location by finding the

7If pn|n´1,i can be evaluated exactly, it is replaced with p̂n|n´1,i.

empirical mean of tθ
plq
n,iu

L
l“1

.

Before proceeding with the next time window, Brownian

motion is applied to tθ
plq
n,iu

L
l“1

yielding i.i.d. samples from

pn`1|n,ipθiq, i.e.,

θ
plq
n`1|n,i “ θ

plq
n,i ` ǫplq

n , ǫplq
n „ N p.;0, σ2

nIq, (38)

where I is the 2 ˆ 2 identity matrix.

The communication messages in this implementation strat-

egy for the conceptual procedure in Algorithm 1 consist of

particle sets which are equivalently (unordered) numerical

arrays. For distributed fusion, node i broadcasts an array

of average length OpMkMq to its neighbours in line 7 of

Algorithm 1, where Mk is the number of targets and M is the

number of particles used per target.

The exchanges for cooperative localisation have a period

of T . First, nodes broadcast L particles, i.e., an OpLq array,

to construct (34). Because these particles are generated from

the a priori localisation distributions in lines 3 and 16, it

is convenient to have these broadcasts take place in these

lines. Hence, the expectation in line 3 can be performed at

the neighbours using the empirical mean of the messages.

After the node-wise separable terms are computed, they are

exchanged in line 12 which corresponds to the transmission

of an OpLDiq array where Di is the degree (or, the number

of neighbours) of node i. The loopy BP messages in line 14

are encoded by the L particles given in (35). The mixture

representation in (36) is recovered from these particles by

using the weigths already known both at the transmitting and

the receiving nodes, and, the rule-of-thumb KDE method. As a

result, S iterations of loopy BP corresponds to the transmission

of an OpSLDiq array. Note that, the exchange of location

estimates from the current posterior marginals in line 15 leads

to a comparably negligible, constant communication load. As

a result, the communication complexity of the cooperative

scheme for node i is OpLppS ` 1qDi ` 1qq.

VII. EXAMPLE

We demonstrate the cooperative self-calibration algorithm

introduced in Section V for self-localisation using the Monte

Carlo realisation described in Section VI. The example sce-

nario is depicted in Figure 1 and consists of four objects

moving in a surveillance region being observed by nine sensors

for 200 steps8. The nodes networked through communication

links which are the edges of the communication graph G (blue

lines).

The object states are described by their planar position

and velocity, i.e., xn “ rpxlnqT , pxvnqT sT . The trajectories are

obtained using a linear constant velocity motion model with

(slight) additive process noise:

πpxn|xn´1q “ N pxn;Fxn´1, Qq

F “

«

I, I

0, I

ff

, Q “ 0.075

«

1

3
I, 1

2
I

1

2
I, I

ff

8Results using this scheme on a problem with a smaller scale can be found
in [44].
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Fig. 1. Nine sensor nodes networked through communication links (blue
edges) observing four objects. Black curves are the object trajectories boxes
indicating the initial positions.

where I and 0 are the 2 ˆ 2 identity and zero matrices,

respectively.

The sensors measure the bearing angle and the range of the

objects in their SCCS with standard deviations σφ “ 1˝ and

σR “ 5m, respectively. The likelihood model in (5) is then

found as

lipz|x; θiq “ N p=pxl ´ θiq; 0, σ
2

φqN p
›

›xl ´ θi
›

› ; 0, σ2

Rq.

Each object is detected with PD “ 0.98. The number

of false alarms at time k is Poisson distributed with mean

λC,i “ 2 for i P V and the associated spatial distribution is

uniform in the sensor field-of-views. A typical realisation of

measurements at sensor 7 over time can be seen in Figure 2.

The nodes filter their local measurements using the SMC

PHD algorithm in [45]. The probability that an object with

state x remains to exist in the next step is select PSpxq “ 0.9.

The resulting Poisson multi-object models are exchanged with

the neighbours in G (for distributed fusion).

Node 1 is selected as the origin of the network coordinate

system. For the other nodes, the localisation prior for the

first time window, i.e., p1|0,ipθiq, is selected to be a uniform

distribution over the sensing region. A window length of

T “ 10 is used for computing the node-wise separable edge

potentials as detailed in Section VI. The first time window

starts at k “ 40 to avoid using the posteriors from the early

(transient) stages of filtering. Because uniform localisation

priors are used, the initial set of location values in (34) –

at which the node-wise terms are evaluated– are selected
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Fig. 2. Typical range and bearing measurements collected at sensor node 7.
The field-of-view is the circular region around the sensor with a radius of
4000m.
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Fig. 3. Maximum localisation error in the network versus the iteration number
of the proposed algorithm for 200 Monte Carlo runs. The boxes are centred
at the median (red) with edges (blue) at the 25th and 75th percentiles.

as random permutations of an L “ 900 node uniform grid

over the sensing region. Thus, at each time step k within

the window, the local likelihood updates for these values are

computed using (32)–(34) and the node-wise terms (21),(22)

are updated. At the end of the time window, these terms

are exchanged to find the edge potentials (20). This stage

is followed by S “ 8 steps of nonparametric BP (Eq.s (35)–

(37)).

Following the last NBP step, each node estimates its loca-

tion as the empirical mean of the local marginal represented

by L “ 900 particles. A total of 16 iterations of the proposed

algorithm is performed starting from k “ 50 to 200 in every

T “ 10 steps. The Brownian motion parameter σn in (38)

varies from σ1 “ 600 to σ16 “ 1 in accordance with a square

law.

We consider the maximum localisation error in the network

for 200 Monte Carlo runs. In Fig. 3 we present the box-plot

of these errors for all runs with respect to the time window

index n. The average error at the final iteration n “ 16

is 5.95m which is comparably close to the uncertainties in

sensor measurements. The highest error, or, the error margin

is 12.09m. Next, we consider the error margins for all steps

and normalise them with the minimum distance between the

nodes in this deployment, i.e., 1000m. The semi-log plot of

the normalised error margins can be seen in Fig. 4. Note that

the decay speed is close to a log-linear regime and reaches

a minimum corresponding to approximately 1.2% of the

normalising distance at n “ 16. These results demonstrate that

the proposed scheme is capable of providing self-localisation

with good accuracy and small error margins.
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Fig. 4. Log-normalised error margin versus the iteration number n.
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VIII. CONCLUSION

In this article, we propose a cooperative self-calibration

scheme for sensor localisation in distribution fusion networks.

The nodes in such networks collect measurements from a

multi-object scene which involve uncertainties due to noise,

probability of detection being less than one, and, the presence

of false detections from the surroundings. Multi-sensor scal-

ability is achieved by local filtering of these measurements,

which in turn provides multi-object posteriors as the infor-

mation entities to communicate and be fused for multi-sensor

exploitation, as opposed to transmitting raw detections across

the network.

We introduce a probabilistic model to estimate sensor

calibration parameters without violating the locality structure

of computations and by using nearest neighbour message ex-

changes. In particular, we develop node-wise separable param-

eter likelihoods which can be computed based on the locally

available information for distributed fusion. The interactions

between pairs of sensors sharing a communication link are

used to build up a pairwise MRF model with these separable

likelihoods as its edge potentials. Distributed estimation is,

then, carried out using (loopy) BP over the communication

graph.

Our approach inherets the capability of handling highly

uncertain measurements from the local multi-object filters

without posing any significant constraint on the system con-

figuration. It can also be used in solving general calibration

problems and at a fusion centre to avoid the computational

burden of centralised multi-sensor filtering in parameter esti-

mation. In the case of mobile sensor platforms, our framework

can accommodate dynamical parameter models, as well.

There is a variety of possible extensions of this work.

Different node wise separable parameter likelihoods can be

found by using different strategies to approximate (15). More

sophisticated sampling schemes can be adopted for the re-

alisation of the algorithm. It is also possible to use more

accurate multi-object models, in this framework, with the cost

of increasing communication and/or computational demand.

APPENDIX

A. Proof of Proposition 4.1

We begin the proof by substituting the distributions of concern

in the definition of (conditional) KL divergence. For the sake

of a shorter notation, we denote the sensor histories from time

1 to k´1, i.e., Zi
1:k´1

and Z
j
1:k´1

by Hi and Hj , respectively.

We also drop the time indices in the current measurements Zi
k

and Z
j
k. The KL divergence in (18) is given by

D
`

ppZi, Zj |Hi,Hj , θi,jq||qpZi, Zj |Hi,Hj , θi,jq
˘

“
ż

δZiδZjδHiδHjdθi,jppZi, Zj ,Hi,Hj , θi,jqˆ

log
ppZi, Zj |Hi,Hj , θi,jq

qpZi, Zj |Hi,Hj, θi,jq

“
ż

δZiδZjδHiδHjdθi,jppZi, Zj ,Hi,Hj , θi,jqˆ

log

ˆ

ppZi, Zj|Hi,Hj , θi,jq

ppZi|Hj , θi,jqppZj |Hi, θi,jq

˙

. (39)

In the integration above, the variables regarding sensor

measurements and histories are sets (as opposed to vectors),

and, their integration is defined in Appendix C. As far as the

proof is concerned, it suffices to have well-defined integration

rules for the variables involved. The results hold true for any

such variables including vector valued sensor measurements.

Next, we consider (39) and multiply the numerator and

the denominator inside the log term by the product of

ppZi, Zj |Hi,Hj , θi,jq, ppZi|Hi,Hj , θi,jq,ppZj|Hi,Hj , θi,jq,

ppHi|Hj , θi,jq, and, ppHj |Hi, θi,jq. Thus,

D
`

ppZi, Zj|Hi,Hj, θi,jq||qpZi, Zj |Hi,Hj, θi,jq
˘

“
ż

δZiδZjδHiδHjdθi,jppZi, Zj,Hi,Hj , θi,jq ˆ
ˆ

log
ppZi, Zj,Hj |Hi, θi,jq

ppZj |Hi, θi,jqppZi,Hj |Hi, θi,jq

` log
ppZi, Zj ,Hi|Hj , θi,jq

ppZi|Hj , θi,jqppZj ,Hi|Hj , θi,jq

` log
ppZi|Hi,Hj , θi,jqppZj |Hi,Hj , θi,jq

ppZi, Zj |Hj ,Hi, θi,jq

˙

“ IpZj ;Zi,Hj |Hi, θi,jq ` IpZi;Zj,Hi|Hj , θi,jq

´IpZj ;Zi|Hj ,Hi, θi,jq

“ IpZj ;Hj |Hi, θi,jq ` IpZj ;Zi|Hj ,Hi, θi,jq

`IpZi;Hi|Hj , θi,jq ` IpZj ;Zi|Hj ,Hi, θi,jq

´IpZj ;Zi|Hj ,Hi, θi,jq

“ IpZj ;Hj |Hi, θi,jq ` IpZi;Hi|Hj , θi,jq

`IpZj ;Zi|Hj ,Hi, θi,jq. (40)

The second equality above follows from the definition of

mutual information (MI) [34], and, in the penultimate line,

the chain rule for information [34] is used with the positive

terms. �

B. Proof of Corollary 4.2

We use the simplified notation introduced in Appendix A for

the proof of Proposition 4.1. The data processing inequality

(DPI) [34] applied simultaneously to the first two terms

in the RHS of (18) (or, the RHS of (40) in the simpli-

fied notation) in accordance with the (conditional) chains

Z
j Ø Xk Ø H

j |Hi, θi,j and Z
i Ø Xk Ø H

i|Hj, θi,j ,

respectively, yields

IpZj ;Hj |Hi, θi,jq ` IpZi;Hi|Hj , θi,jq

ď IpXk;H
j |Hi, θi,jq ` IpXk;H

i|Hj , θi,jq

“ HpXk|Hi, θi,jq ´HpXk|Hj ,Hi, θi,jq

`HpXk|Hj , θi,jq ´HpXk|Hi,Hj , θi,jq. (41)

For the third MI term in (18) (equivalently in (40)),

there are two alternative ways to use the DPI in accordance

with Z
j
k Ø Xk Ø Z

i
k|Hi,Hj , θi,j which hold true simulta-

neously:

IpZj ;Zi|Hj ,Hi, θi,jq

ď IpXk;Z
i|Hj ,Hi, θi,jq

“ HpXk|Hj ,Hi, θi,jq ´HpXk|Zi,Hj ,Hi, θi,jq, (42)
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and,

IpZj ;Zi|Hj ,Hi, θi,jq

ď IpXk;Z
j|Hj ,Hi, θi,jq

“ HpXk|Hj ,Hi, θi,jq ´HpXk|Zj ,Hj ,Hi, θi,jq.(43)

Therefore, combining (41),(42) and (43) leads to the upper

bound for (18) given by (19). �

C. Marginalisation of RFS variables

Throughout the article, RFS variables are often marginalised

by integrating densities over all possible values. Let X be a

RFS with elements in X . X takes values in the space of all

finite sets denoted by FpX q. Consider a RFS probability den-

sity f : FpX q Ñ r0,8q. The probability that X is contained

in a closed subset S of X is given by the set integral [25,

Chp.11]

PrtX Ď Su “

ż

S

fpXqδX,

which is defined as
ż

S

fpXqδX “
8
ÿ

m“0

1

m!

ż

Sm

fptx1, ¨ ¨ ¨ , xmuqdx1 ¨ ¨ ¨ dxm.

(44)

Marginalisation of X involves integrating a probability

density over FpX q which can equivalently be carried out

through the set integral defined above:
ż

FpX q

fpXqµpdXq “

ż

X

fpXqδX (45)

where µ is an appropriate measure, for example, the unnor-

malised distribution of a Poisson point process with a uniform

rate (further details can be found in Section II.B in [40], and

the references therein).

This identity holds for any real valued measurable function

f : FpX q Ñ R (Appendix B in [40]), thus, along with

marginalisation of joint densities, computations regarding in-

formation measures and divergences of RFS distributions can

be carried out using set integrals as well [46].
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