4,378 research outputs found

    Two Timescale Convergent Q-learning for Sleep--Scheduling in Wireless Sensor Networks

    Full text link
    In this paper, we consider an intrusion detection application for Wireless Sensor Networks (WSNs). We study the problem of scheduling the sleep times of the individual sensors to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous state-action spaces, in a manner similar to (Fuemmeler and Veeravalli [2008]). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation (SPSA) estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation for the Q-values) is updated in an on-policy temporal difference (TD) algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model. Our simulation results on a 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work

    Game-theoretical control with continuous action sets

    Full text link
    Motivated by the recent applications of game-theoretical learning techniques to the design of distributed control systems, we study a class of control problems that can be formulated as potential games with continuous action sets, and we propose an actor-critic reinforcement learning algorithm that provably converges to equilibrium in this class of problems. The method employed is to analyse the learning process under study through a mean-field dynamical system that evolves in an infinite-dimensional function space (the space of probability distributions over the players' continuous controls). To do so, we extend the theory of finite-dimensional two-timescale stochastic approximation to an infinite-dimensional, Banach space setting, and we prove that the continuous dynamics of the process converge to equilibrium in the case of potential games. These results combine to give a provably-convergent learning algorithm in which players do not need to keep track of the controls selected by the other agents.Comment: 19 page

    Deep Residual Reinforcement Learning

    Full text link
    We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperforms vanilla DDPG in the DeepMind Control Suite benchmark. Moreover, we find the residual algorithm an effective approach to the distribution mismatch problem in model-based planning. Compared with the existing TD(kk) method, our residual-based method makes weaker assumptions about the model and yields a greater performance boost.Comment: AAMAS 202
    corecore