26 research outputs found

    On the Global Linear Convergence of the ADMM with Multi-Block Variables

    Full text link
    The alternating direction method of multipliers (ADMM) has been widely used for solving structured convex optimization problems. In particular, the ADMM can solve convex programs that minimize the sum of NN convex functions with NN-block variables linked by some linear constraints. While the convergence of the ADMM for N=2N=2 was well established in the literature, it remained an open problem for a long time whether or not the ADMM for N≥3N \ge 3 is still convergent. Recently, it was shown in [3] that without further conditions the ADMM for N≥3N\ge 3 may actually fail to converge. In this paper, we show that under some easily verifiable and reasonable conditions the global linear convergence of the ADMM when N≥3N\geq 3 can still be assured, which is important since the ADMM is a popular method for solving large scale multi-block optimization models and is known to perform very well in practice even when N≥3N\ge 3. Our study aims to offer an explanation for this phenomenon

    Semidefinite Programming Approach for the Quadratic Assignment Problem with a Sparse Graph

    Full text link
    The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension n2n^2 where n is the number of nodes. To achieve a speed up, we propose a further relaxation of the SDP involving a number of positive semidefinite matrices of dimension O(n)\mathcal{O}(n) no greater than the number of edges in one of the graphs. The relaxation can be further strengthened by considering cliques in the graph, instead of edges. The dual problem of this novel relaxation has a natural three-block structure that can be solved via a convergent Augmented Direction Method of Multipliers (ADMM) in a distributed manner, where the most expensive step per iteration is computing the eigendecomposition of matrices of dimension O(n)\mathcal{O}(n). The new SDP relaxation produces strong bounds on quadratic assignment problems where one of the graphs is sparse with reduced computational complexity and running times, and can be used in the context of nuclear magnetic resonance spectroscopy (NMR) to tackle the assignment problem.Comment: 31 page

    Preconditioned ADMM for a Class of Bilinear Programming Problems

    Get PDF
    corecore