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We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each
subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational
inequality, the global convergence of the proposed method is analyzed and a worst-case O(1/𝑡) convergence rate in an ergodic
sense is established. Several preliminary numerical examples, including the Markowitz portfolio optimization problem, are also
tested to verify the performance of the proposed method.

1. Introduction

Let R, R𝑛, R𝑚×𝑛 be the set of real numbers, the set of 𝑛-
dimensional real column vectors, and the set of 𝑚 × 𝑛 real
matrices, respectively. For any 𝑥, 𝑦 ∈ R𝑛, we use the symbol⟨𝑥, 𝑦⟩ = 𝑥𝑇𝑦 to denote their inner product and the symbol‖𝑥‖ = √⟨𝑥, 𝑥⟩ to stand for the Euclidean norm of 𝑥, where
the superscript 𝑇 is the transpose. Symbol 𝐼𝑛 is 𝑛 × 𝑛 identity
matrix, which is simply denoted by 𝐼 with proper dimension
in the context. Consider the following generalized bilinear
programming:

min {𝑓 (𝑥) | 𝐴1𝑥 = 𝑏1, 𝐴2𝑥 = 𝑏2, 𝑥 ∈ X ∩Y} , (1)

where 𝑓(𝑥) : R𝑛 → R is a closed proper convex function
(possibly nonsmooth); 𝐴 𝑖 ∈ R𝑚𝑖×𝑛, 𝑏𝑖 ∈ R𝑚𝑖 (𝑖 = 1, 2)
are given matrices and vectors, respectively; X and Y are
closed convex sets with nonempty intersection. Throughout
this article, we assume that the solution set of (1) is nonempty.

The bilinear programming (1) arises inmany applications,
for instance, the Linear-Max-Min problem, the Location-
Allocation problem, and the classic Markowitz portfolio
optimization problem; see, for example, [1, 2] formore details.

As an extension of the linear programming, problem (1) can
be recast as the following existing model:

min {𝑓 (𝑥) | 𝐴𝑥 = 𝑏, 𝑥 ∈ Ω} (2)

with 𝐴 = [𝐴1𝐴2] ∈ R
(𝑚1+𝑚2)×𝑛,

𝑏 = (𝑏1𝑏2) ∈ R
𝑚1+𝑚2 ,Ω = X ∩Y,

(3)

which can be solved by some classical optimization methods
if the constrained set Ω is easy, such as the proximal point
algorithm [3] and the augmented Lagrangian method [4].
However, using such transformationswill lead to a large-scale
coefficient matrix and increase the computational complexity
and storage requirement. In particular, when sets X and Y
are complex or the objective function is not well defined, we
would better deal with the variables separately and make the
best of the structure properties of the given sets.
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Next, we focus on developing a preconditioned alternat-
ing direction method of multipliers (P-ADMM) for solving
(1), where each subproblem can solved by adding a proximal
regularization term and the Lagrange multipliers can be
updated by using some preconditioned symmetric positive-
definite (SPD) matrices. By the aid of new variables 𝑥1 and𝑥2, problem (1) is firstly reformulated as follows:

min 𝑓1 (𝑥1) + 𝑓2 (𝑥2)
s.t. 𝐴1𝑥1 = 𝑏1,𝐴2𝑥2 = 𝑏2,𝑥1 − 𝑥2 = 0,𝑥1 ∈ X, 𝑥2 ∈ Y,

(4)

where𝑓1(𝑥1) = 𝑓(𝑥1),𝑓2(𝑥2) = 𝑓(𝑥2).An obvious advantage
of such reformulation is that the given sets X and Y can be
treated separately instead of regarding them as awhole. Given
symmetric positive-definite matrices 𝑃1 ∈ R𝑚1×𝑚1 and 𝑃2 ∈
R𝑚2×𝑚2 , the augmented Lagrangian function of (4) is given
by

L𝛽 (𝑥1, 𝑥2, 𝜆) = 𝐿 (𝑥1, 𝑥2, 𝜆)+ 𝛽2 {𝐴1𝑥1 − 𝑏12𝑃1 + 𝐴2𝑥2 − 𝑏22𝑃2 + 𝑥1 − 𝑥22} , (5)

where 𝛽 > 0 is a penalty parameter and𝐿 (𝑥1, 𝑥2, 𝜆) = 𝑓1 (𝑥1) + 𝑓2 (𝑥2) − ⟨𝜆1, 𝐴1𝑥1 − 𝑏1⟩− ⟨𝜆2, 𝐴2𝑥2 − 𝑏2⟩ − ⟨𝜆3, 𝑥1 − 𝑥2⟩ (6)

is the Lagrangian function of problem (4) with a multiplier𝜆 fl (𝜆1, 𝜆2, 𝜆3) ∈ R𝑚1 ×R𝑚2 ×R𝑛. Then, the introduced
P-ADMM obeys the following iterative scheme:𝑥𝑘+11 = arg min

𝑥1∈X
L𝛽 (𝑥1, 𝑥𝑘2 , 𝜆𝑘) + 𝜎1𝛽2 𝑥1 − 𝑥𝑘12 ,𝑥𝑘+12 = arg min

𝑥2∈Y
L𝛽 (𝑥𝑘1 , 𝑥2, 𝜆𝑘) + 𝜎2𝛽2 𝑥2 − 𝑥𝑘22 ,𝜆𝑘+11 = 𝜆𝑘1 − 𝛽𝑃1 (𝐴1𝑥𝑘+11 − 𝑏1) ,𝜆𝑘+12 = 𝜆𝑘2 − 𝛽𝑃2 (𝐴2𝑥𝑘+12 − 𝑏2) ,𝜆𝑘+13 = 𝜆𝑘3 − 𝛽 (𝑥𝑘+11 − 𝑥𝑘+12 ) ,

(7)

where 𝜎1 ∈ (1, +∞), 𝜎2 ∈ (1, +∞) are two independent
proximal parameters that control the proximity of the new
iterative value to the last one; see, for example, [5] for more
explanations.

Noting that scheme (7) can be regarded as an extended
alternating direction method of multipliers (ADMM) of [6],
because the two parameters 𝜎1, 𝜎2 are independent instead
of the same value and all the preconditioned matrices are
not always identity matrices. For excellent reviews of the
ADMM, we refer the reader to, for example, [6–14] and the

references therein, and also the recent published symmetric
ADMM with larger step sizes in [15] which is an all-
sided work for the two-block separable convex minimization
problem. Besides, Goldstein et al. [16] developed a Nesterov’s
accelerated ADMM for problem (2) with partitions:𝑓 (𝑥) = 𝑓1 (𝑥1) + 𝑓2 (𝑥2) ;𝑥 = (𝑥1, 𝑥2)𝑇 ;𝐴 = [𝐴1, 𝐴2] , (8)

where the global convergence bounds were derived in terms
of the dual objective to the original under the assumption
that the two objectives were strongly convex. In 2016, He
et al. [6] proved that both the Jacobian decomposition of
the augmented Lagrangian method and the proximal point
method were equivalent for solving the multiblock separable
convex programmingwith one linear equality constraint, that
is, problem (2) with partitions:𝑓 (𝑥) = 𝑓1 (𝑥1) + ⋅ ⋅ ⋅ + 𝑓𝑚 (𝑥𝑚) ;𝑥 = (𝑥1, . . . , 𝑥𝑚)𝑇 ;𝐴 = [𝐴1, . . . , 𝐴𝑚] . (9)

Although there are lots of results about ADMM, most
of concerned problems are still with one linear equality
constraint, and research results of a preconditioned ADMM
for (1) are few as far as we know.

Contributions of this paper are summarized as two
aspects. One is that we introduce a novel preconditioned
alternating direction method for solving the bilinear pro-
gramming problem (1), and we prove that the constructed
method is global convergent with a worst-case O(1/𝑡) con-
vergence rate in an ergodic sense. Another contribution is
that several large-scale practical examples are tested to show
the effectiveness of the proposed method. In Section 2, we
analyze the convergence of the proposed method in detail.
In Section 3, we first introduce a linearization technique
for solving the involved subproblems of the P-ADMM (7)
and then carry out some numerical experiments about the
large-scale quadratic programming with two linear equality
constraints. Finally, we conclude the paper in Section 4.

2. Convergence Analysis

By making use of the variational inequality, this section
presents a unified framework to characterize the solution
set of the reformulated problem (4) and the optimality
conditions of the involved subproblems in (7). Moreover, the
global convergence and the worst-case O(1/t) convergence
rate of the proposed method are analyzed in detail. We begin
with a basic lemma given in [15].

Lemma 1. Let 𝑓(𝑥) : R𝑚 → R and ℎ(𝑥) : R𝑚 → R
be convex functions defined on a closed convex set Ω ⊂ R𝑚
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and ℎ(𝑥) be differentiable. Assume that the solution set of the
problemmin𝑥∈Ω{𝑓(𝑥) + ℎ(𝑥)} is nonempty. Then we have

𝑥∗ = argmin {𝑓 (𝑥) + ℎ (𝑥) | 𝑥 ∈ Ω} ⇐⇒ 𝑥∗ ∈ Ω,𝑓 (𝑥) − 𝑓 (𝑥∗) + (𝑥 − 𝑥∗)𝑇 ∇ℎ (𝑥∗) ≥ 0, ∀𝑥 ∈ Ω. (10)

Any tuple (𝑥∗1 , 𝑥∗2 , 𝜆∗) is called a saddle point of
Lagrangian function (6) if it satisfies

𝐿 (𝑥∗1 , 𝑥∗2 , 𝜆) ≤ 𝐿 (𝑥∗1 , 𝑥∗2 , 𝜆∗) ≤ 𝐿 (𝑥1, 𝑥2, 𝜆∗) , (11)

which implies that finding a saddle point of 𝐿(𝑥1, 𝑥2, 𝜆) is
equivalent to finding a point

𝑤∗ = (𝑥∗1 , 𝑥∗2 , 𝜆∗1 , 𝜆∗2 , 𝜆∗3) ∈ M= X ×Y ×R
𝑚1 ×R

𝑚2 ×R
𝑛

(12)

such that

𝑓1 (𝑥1) − 𝑓1 (𝑥∗1 ) + ⟨𝑥1 − 𝑥∗1 , −𝐴𝑇1𝜆∗1 − 𝜆∗3⟩ ≥ 0,∀𝑥1 ∈ X,𝑓2 (𝑥2) − 𝑓2 (𝑥∗2 ) + ⟨𝑥2 − 𝑥∗2 , −𝐴𝑇2𝜆∗2 + 𝜆∗3⟩ ≥ 0,∀𝑥2 ∈ Y,⟨𝜆1 − 𝜆∗1 , 𝐴1𝑥∗1 − 𝑏1⟩ ≥ 0,∀𝜆1 ∈ R
𝑚1 ,⟨𝜆2 − 𝜆∗2 , 𝐴2𝑥∗2 − 𝑏2⟩ ≥ 0,∀𝜆2 ∈ R
𝑚2 ,⟨𝜆3 − 𝜆∗3 , 𝑥∗1 − 𝑥∗2 ⟩ ≥ 0,∀𝜆3 ∈ R
𝑛.

(13)

By rewriting the above inequalities as a compact variational
inequality (VI), we have

VI (𝑓, 𝐹,M) : 𝑓 (𝑢) − 𝑓 (𝑢∗) + ⟨𝑤 − 𝑤∗, 𝐹 (𝑤∗)⟩≥ 0, ∀𝑤 ∈ M, (14)

where 𝑓 (𝑢) = 𝑓1 (𝑥1) + 𝑓2 (𝑥2) ,𝑢 = (𝑥1𝑥2) ,
𝑤 =((

(
𝑥1𝑥2𝜆1𝜆2𝜆3
))
)

,

𝐹 (𝑤) =((
(

−𝐴𝑇1𝜆1 − 𝜆3−𝐴𝑇2𝜆2 + 𝜆3𝐴1𝑥1 − 𝑏1𝐴2𝑥2 − 𝑏2𝑥1 − 𝑥2
))
)

.
(15)

Note that the mapping 𝐹(𝑤) is skew-symmetric, so the
following fundamental property holds:⟨𝑤 − 𝑤, 𝐹 (𝑤) − 𝐹 (𝑤)⟩ = 0, ∀𝑤,𝑤 ∈ M. (16)

By the assumption that the solution set of (1) is nonempty, the
solution set M∗ of VI(𝑓, 𝐹,M) is also nonempty. The next
theorem describes a concrete way to characterizing the set
M∗, whose proof is the same as that of Theorem 2 [10] and
is omitted here.

Theorem 2. The solution set of 𝑉𝐼(𝑓, 𝐹,M) in (14) is convex
and can be expressed as

M
∗ = ⋂
𝑤∈M

{𝑤 ∈ M | 𝑓 (𝑢) − 𝑓 (�̂�) + ⟨𝑤 − 𝑤, 𝐹 (𝑤)⟩≥ 0} . (17)

For any 𝑤 ∈ K(𝑤) = {𝑤 ∈ M | ‖𝑤 − 𝑤‖ ≤ 1}, Theorem 2
shows that if

sup {𝑓 (�̂�) − 𝑓 (𝑢) + ⟨𝑤 − 𝑤, 𝐹 (𝑤)⟩} ≤ 𝜖, (18)

then the vector𝑤 ∈ M is called an 𝜖-approximate solution of
VI(𝑓, 𝐹,M), where 𝜖 > 0 is an accuracy, especially 𝜖 = O(1/𝑡).
Lemma 3. Let the sequence {𝑤𝑘+1} be generated by the
algorithm P-ADMM.Then we have𝑓 (𝑢) − 𝑓 (𝑢𝑘+1)+ ⟨𝑤 − 𝑤𝑘+1, 𝐹 (𝑤𝑘+1) + 𝐺 (𝑤𝑘+1 − 𝑤𝑘)⟩ ≥ 0,∀𝑤 ∈ M, (19)



4 Mathematical Problems in Engineering

where

𝐺 =
[[[[[[[[[[[[[

𝜎1𝛽𝐼 𝛽𝐼 0 0 0𝛽𝐼 𝜎2𝛽𝐼 0 0 00 0 1𝛽𝑃−11 0 00 0 0 1𝛽𝑃−12 00 0 0 0 1𝛽𝐼
]]]]]]]]]]]]]
,

𝑤𝑘 =(((
(

𝑥𝑘1𝑥𝑘2𝜆𝑘1𝜆𝑘2𝜆𝑘3
)))
)

.
(20)

Proof. Applying Lemma 1, the optimality conditions of the
two subproblems in (7) are

𝑓1 (𝑥1) − 𝑓1 (𝑥𝑘+11 ) + ⟨𝑥1 − 𝑥𝑘+11 , −𝐴𝑇1𝜆𝑘1 − 𝜆𝑘3+ 𝛽𝐴𝑇1𝑃1 (𝐴1𝑥𝑘+11 − 𝑏1) + 𝛽 (𝑥𝑘+11 − 𝑥𝑘2)+ 𝜎1𝛽 (𝑥𝑘+11 − 𝑥𝑘1)⟩ ≥ 0, ∀𝑥1 ∈ X, 𝑥𝑘+11 ∈ X,𝑓2 (𝑥2) − 𝑓2 (𝑥𝑘+12 ) + ⟨𝑥2 − 𝑥𝑘+12 , −𝐴𝑇2𝜆𝑘2 + 𝜆𝑘3+ 𝛽𝐴𝑇2𝑃2 (𝐴2𝑥𝑘+12 − 𝑏2) − 𝛽 (𝑥𝑘1 − 𝑥𝑘+12 )+ 𝜎2𝛽 (𝑥𝑘+12 − 𝑥𝑘2)⟩ ≥ 0, ∀𝑥2 ∈ Y, 𝑥𝑘+12 ∈ Y.
(21)

Since the update of the Lagrange multipliers in (7) satisfies

𝜆𝑘1 = 𝜆𝑘+11 − 𝛽𝑃1 (𝐴1𝑥𝑘+11 − 𝑏1) ,𝜆𝑘2 = 𝜆𝑘+12 − 𝛽𝑃2 (𝐴2𝑥𝑘+12 − 𝑏2) ,𝜆𝑘3 = 𝜆𝑘+13 − 𝛽 (𝑥𝑘+11 − 𝑥𝑘+12 ) , (22)

substituting (22) into (21) we obtain

𝑓1 (𝑥1) − 𝑓1 (𝑥𝑘+11 ) + ⟨𝑥1 − 𝑥𝑘+11 , −𝐴𝑇1𝜆𝑘+11 − 𝜆𝑘+13+ 𝜎1𝛽 (𝑥𝑘+11 − 𝑥𝑘1) + 𝛽 (𝑥𝑘+12 − 𝑥𝑘2)⟩ ≥ 0,𝑓2 (𝑥2) − 𝑓2 (𝑥𝑘+12 ) + ⟨𝑥2 − 𝑥𝑘+12 , −𝐴𝑇2𝜆𝑘+12 + 𝜆𝑘+13+ 𝛽 (𝑥𝑘+11 − 𝑥𝑘1) + 𝜎2𝛽 (𝑥𝑘+12 − 𝑥𝑘2)⟩ ≥ 0.
(23)

Notice that (22) can be rewritten as⟨𝜆1 − 𝜆𝑘+11 , 𝐴1𝑥𝑘+11 − 𝑏1 + 1𝛽𝑃−11 (𝜆𝑘+11 − 𝜆𝑘1)⟩ ,∀𝜆1 ∈ R
𝑚1 , 𝜆𝑘+11 ∈ R

𝑚1 ,⟨𝜆2 − 𝜆𝑘+12 , 𝐴2𝑥𝑘+12 − 𝑏2 + 1𝛽𝑃−12 (𝜆𝑘+12 − 𝜆𝑘2)⟩ ,∀𝜆2 ∈ R
𝑚2 , 𝜆𝑘+12 ∈ R

𝑚2 ,⟨𝜆3 − 𝜆𝑘+13 , 𝑥𝑘+11 − 𝑥𝑘+12 + 1𝛽 (𝜆𝑘+13 − 𝜆𝑘3)⟩ ,∀𝜆3 ∈ R
𝑛, 𝜆𝑘+13 ∈ R

𝑛.
(24)

Combining (23) and (24), we immediately complete the
proof.

Note that matrix 𝐺 in Lemma 3 is strictly SPD, because
the upper-left 2 × 2 block matrix is SPD for any 𝜎1 > 1,𝜎2 > 1 and the lower-right 3 × 3 diagonal matrix is SPD from
the symmetric positivity of the matrices 𝑃1, 𝑃2 and 𝛽 > 0.
Comparedwith the inequalities (14) and (19), the key to prove
the convergence of the algorithm P-ADMM is to verify that
the cross term of (19) converges to zero, that is,

lim
𝑘→∞

⟨𝑤 − 𝑤𝑘+1, 𝐺 (𝑤𝑘+1 − 𝑤𝑘)⟩ = 0, ∀𝑤 ∈ M. (25)

In other words, the sequence {𝑤𝑘 −𝑤∗} would be contractive
under the weighted matrix 𝐺. In what follows, we will show
such assertion by using the definition ‖𝑤‖𝐺 = √𝑤𝑇𝐺𝑤 for
any 𝑤 ∈ R𝑚1+𝑚2+3𝑛.
Lemma 4. The sequence {𝑤𝑘+1} generated by the algorithm P-
ADMM satisfies𝑤𝑘+1 − 𝑤∗2𝐺 ≤ 𝑤𝑘 − 𝑤∗2𝐺 − 𝑤𝑘 − 𝑤𝑘+12𝐺 . (26)

Proof. Setting 𝑤 = 𝑤∗ in (19), it follows that⟨𝑤∗ − 𝑤𝑘+1, 𝐺 (𝑤𝑘+1 − 𝑤𝑘)⟩≥ 𝑓 (𝑢𝑘+1) − 𝑓 (𝑢∗) + ⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤𝑘+1)⟩ . (27)

By making use of (16) and (14), we get𝑓 (𝑢𝑘+1) − 𝑓 (𝑢∗) + ⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤𝑘+1)⟩≥ 𝑓 (𝑢𝑘+1) − 𝑓 (𝑢∗) + ⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤∗)⟩ ≥ 0, (28)

which leads to⟨𝑤𝑘+1 − 𝑤∗, 𝐺 (𝑤𝑘 − 𝑤𝑘+1)⟩ ≥ 0. (29)
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Based on (29) and the symmetric positivity of 𝐺, we can
obtain𝑤𝑘 − 𝑤∗2𝐺 = 𝑤𝑘 − 𝑤𝑘+1 + 𝑤𝑘+1 − 𝑤∗2𝐺= 𝑤𝑘 − 𝑤𝑘+12𝐺 + 𝑤𝑘+1 − 𝑤∗2𝐺+ 2 ⟨𝑤𝑘+1 − 𝑤∗, 𝐺 (𝑤𝑘 − 𝑤𝑘+1)⟩≥ 𝑤𝑘 − 𝑤𝑘+12𝐺 + 𝑤𝑘+1 − 𝑤∗2𝐺 .

(30)

Theorem 5. Let the sequence {𝑤𝑘+1} be generated by the
algorithm P-ADMM, then the following assertions hold:

(a) lim𝑘→∞(𝑤𝑘 − 𝑤𝑘+1) = 0.
(b) The sequence {𝑤𝑘+1} is bounded.
(c) Any accumulation point of {𝑤𝑘+1} is a solution point of𝑉𝐼(𝑓, 𝐹,M).
(d) There exists 𝑤∞ ∈ M∗ such that lim𝑘→∞𝑤𝑘+1 = 𝑤∞.

Proof. Summing the inequality (26) over 𝑘 = 0, 1, 2, . . . ,∞,
we have

∞∑
𝑘=0

𝑤𝑘 − 𝑤𝑘+12𝐺 ≤ 𝑤0 − 𝑤∗2𝐺 , (31)

which implies lim𝑘→∞(𝑤𝑘 − 𝑤𝑘+1) = 0 because of the
symmetric positivity of the matrix 𝐺. The assertion (b) is
evident followed by (a). By taking the limit of (19) and using
the assertion (a), we get

lim
𝑘→∞

{𝑓 (𝑢) − 𝑓 (𝑢𝑘+1) + ⟨𝑤 − 𝑤𝑘+1, 𝐹 (𝑤𝑘+1)⟩} ≥ 0,∀𝑤 ∈ M, (32)

which shows that lim𝑘→∞𝑤𝑘+1 is a solution point of VI(𝑓,𝐹,M), that is, the assertion (c) holds.
Let 𝑤∞ be an accumulation point of {𝑤𝑘+1}. Then the

third assertion implies that 𝑤∞ ∈ M∗ and𝑤𝑘+1 − 𝑤∞2𝐺 ≤ 𝑤𝑘 − 𝑤∞2𝐺 − 𝑤𝑘 − 𝑤𝑘+12𝐺 . (33)

Using the above inequality together with the assertion (a), the
proof of (d) is completed.

Theorem 6. For any integer 𝑡 > 0 and the sequence {𝑤𝑘+1}
generated by the P-ADMM (7), let𝑤𝑡 = 1𝑡 + 1 𝑡∑

𝑘=0

𝑤𝑘+1. (34)

Then it holds that𝑓 (�̂�𝑡) − 𝑓 (𝑢) + ⟨𝑤𝑡 − 𝑤, 𝐹 (𝑤)⟩≤ 12 (𝑡 + 1) 𝑤0 − 𝑤2𝐺 , ∀𝑤 ∈ M. (35)

Proof. Clearly, 𝑤𝑡 ∈ M since it can be treated as a convex
combination of 𝑤𝑘+1 (𝑘 = 0, 1, . . . , 𝑡). Substituting (16) into
(19), we deduce that𝑓 (𝑢) − 𝑓 (𝑢𝑘+1) + ⟨𝑤 − 𝑤𝑘+1, 𝐹 (𝑤)⟩≥ ⟨𝑤𝑘+1 − 𝑤,𝐺 (𝑤𝑘+1 − 𝑤𝑘)⟩ , ∀𝑤 ∈ M. (36)

By utilizing an identity2 ⟨𝑎 − 𝑏, 𝐺 (𝑐 − 𝑑)⟩ = ‖𝑎 − 𝑑‖2𝐺 − ‖𝑎 − 𝑐‖2𝐺 + ‖𝑐 − 𝑏‖2𝐺− ‖𝑑 − 𝑏‖2𝐺 , (37)

we obtain⟨𝑤𝑘+1 − 𝑤,𝐺 (𝑤𝑘+1 − 𝑤𝑘)⟩= 12 (𝑤𝑘+1 − 𝑤2𝐺 + 𝑤𝑘+1 − 𝑤𝑘2𝐺 − 𝑤𝑘 − 𝑤2𝐺)≥ 12 (𝑤𝑘+1 − 𝑤2𝐺 − 𝑤𝑘 − 𝑤2𝐺) ,
(38)

which makes (36) become𝑓 (𝑢) − 𝑓 (𝑢𝑘+1) + ⟨𝑤 − 𝑤𝑘+1, 𝐹 (𝑤)⟩ + 12 𝑤𝑘 − 𝑤2𝐺≥ 12 𝑤𝑘+1 − 𝑤2𝐺 . (39)

Summing the above inequality over 𝑘 = 0, 1, . . . , 𝑡, we have(𝑡 + 1) 𝑓 (𝑢) − 𝑡∑
𝑘=0

𝑓 (𝑢𝑘+1)
+⟨(𝑡 + 1)𝑤 − 𝑡∑

𝑘=0

𝑤𝑘+1, 𝐹 (𝑤)⟩ + 12 𝑤0 − 𝑤2𝐺≥ 0 ⇐⇒1𝑡 + 1 𝑡∑
𝑘=0

𝑓 (𝑢𝑘+1) − 𝑓 (𝑢) + ⟨𝑤𝑡 − 𝑤, 𝐹 (𝑤)⟩≤ 12 (𝑡 + 1) 𝑤0 − 𝑤2𝐺 .
(40)

Since𝑓(𝑢) is convex and �̂�𝑡 = (1/(𝑡+1))∑𝑡𝑘=0 𝑢𝑘+1, so it holds
that 𝑓 (�̂�𝑡) ≤ 1𝑡 + 1 𝑡∑

𝑘=0

𝑓 (𝑢𝑘+1) . (41)

Substituting it into (40), the proof is completed.

Remark 7. Theorem 5 shows that the P-ADMM (7) is globally
convergent. And Theorem 6 tells us that for any given
compact set K ⊂ M and 𝜂 fl sup𝑤∈K‖𝑤0 − 𝑤‖2𝐺, the vector𝑤𝑡 must satisfy

sup
𝑤∈K

{𝑓 (�̂�𝑡) − 𝑓 (𝑢) + ⟨𝑤𝑡 − 𝑤, 𝐹 (𝑤)⟩} ≤ 𝜂2 (𝑡 + 1) , (42)

which shows that the proposedmethod converges in a worst-
case O(1/𝑡) rate in an ergodic sense.



6 Mathematical Problems in Engineering

Remark 8. The penalty parameter 𝛽 in (7) can be updated
by the formula 𝛽𝑘+1 = 𝜏𝛽𝑘 with 𝜏 > 0, and it is a constant
when taking 𝜏 = 1. The preconditioned matrices 𝑃1 and 𝑃2
are usually chosen as the identity matrix, the diagonal matrix
with positive diagonal entries, or the tridiagonal matrix.

3. Numerical Experiments

In this section, we investigate the feasibility and efficiency of
the proposed method by some numerical experiments about
the quadratic programming model with two linear equality
constraints.The codes of the algorithm P-ADMM are written
in MATLAB 7.10 (R2010a) and the experiments are carried
out on a PC with Intel Core i5 processor (3.3 GHz) with
4GB memory. Inspired by Theorem 5, we take an easily

implementable stopping criterion for the proposed method,
that is,

ERR (𝑘) = max {𝑥𝑘1 − 𝑥𝑘+11 ∞ , 𝑥𝑘2 − 𝑥𝑘+12 ∞} ≤ tol, (43)

where tol is the given tolerance and 𝑥𝑘𝑖 is the 𝑘th iteration
generated by scheme (7).

To avoid the case that the subproblems of (7) have no
explicit solution, the two preconditioned matrices are simply
chosen as the identity matrix, and we then can use a lin-
earized strategy to accelerate the convergence of solving the
subproblems. Without loss of generality, we take the 𝑥1-
subproblem, for example. In such case, the 𝑥1-subproblem is
equivalent to

𝑥𝑘+11 = arg min
𝑥1∈X

{{{𝑓1 (𝑥1) + 𝛽2 (𝐴1𝑥1 − 𝑏1 − 𝜆𝑘1𝛽 2 + 𝑥1 − 𝑥𝑘2 − 𝜆𝑘3𝛽 2 + 𝜎1 𝑥1 − 𝑥𝑘12)}}}= arg min
𝑥1∈X

{𝑓1 (𝑥1) + 𝛽2 A𝑥1 − a2} , (44)

where

A = [[[
𝐴1𝐼√𝜎1𝐼]]] ∈ R

(𝑚1+2𝑛)×𝑛,
a =(𝑏1 + 𝜆𝑘1𝛽𝑥𝑘2 + 𝜆𝑘3𝛽√𝜎1𝑥𝑘1)∈ R

𝑚1+2𝑛. (45)

By the well-known Taylor formula in mathematical analysis,
the quadratic term ‖A𝑥1 − a‖2/2 can be approximated by12 A𝑥1 − a2 ≈ 12 A𝑥𝑘1 − a1

2 + ⟨𝑔𝑘, 𝑥1 − 𝑥𝑘1⟩+ 12𝜂 𝑥1 − 𝑥𝑘12 , (46)

where 𝜂 > 0 is a proximal factor and 𝑔𝑘 = A𝑇(A𝑥𝑘1 − a) is
the gradient of the quadratic term at 𝑥𝑘1 . Hence, the objective
function in (44) is of the equivalent form:𝑓1 (𝑥1) + 𝛽2𝜂 𝑥1 − 𝑥𝑘1 − 𝜂𝑔𝑘12 , (47)

which makes the 𝑥1-subproblem have closed solution form.
The 𝑥2-subproblem can be also tackled in a similar way as the𝑥1-subproblem. Formore cases that are analogous to (47), the
explicit solution form can be dated back to Lemmas 1 and 3
given in [17].

In what follows, the penalty parameter 𝛽 is updated by
the formula 𝛽𝑘+1 = 5𝛽𝑘 with 𝛽0 = 0.5𝑒 − 3, the proximal
parameters are chosen as (𝜎1, 𝜎2) = (2, 2), 𝜂 = 0.25𝑒 −2, and the iterative variables are initialized as fixed values(𝑥01, 𝑥02) = (ones(𝑛, 1), ones(𝑛, 1)). Generally speaking, the
quadratic programming with two linear equality constraints
is of the following form:

min 12𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥
s.t. 𝐴1𝑥 = 𝑏1,𝐴2𝑥 = 𝑏2,𝑥 ∈ Ω, (48)

where𝐻 ∈ R𝑛×𝑛 is a positive semidefinitematrix.Model (48)
includes the classic Markowitz portfolio optimization prob-
lem as a special case; see, for example, [2] and Example 10.

Example 9. Consider model (48) with a simple caseΩ = R𝑛,
where the given data are randomly generated by the following
MATLAB codes: 𝐻1 = randn (𝑛) ;𝐻 = 𝐻𝑇1 ∗ 𝐻1;𝑐 = rand (𝑛, 1) ;𝐴1 = randn (𝑛) ;𝐴2 = randn (𝑛) ;𝑏1 = rand (𝑛, 1) ;𝑏2 = rand (𝑛, 1) .

(49)
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Figure 1: Convergence curves of the residual ROB (a) and the iterative error ERR (b).

Table 1: Experimental results of Example 9 by the P-ADMM.

tol IT CPU ERR ROB1𝑒 − 1 8 0.0265 0.0273 −11.94881𝑒 − 3 12 0.0593 9.7241𝑒 − 4 −12.01181𝑒 − 5 19 0.0518 7.7188𝑒 − 6 −12.01601𝑒 − 7 26 0.0646 6.0438𝑒 − 8 −12.01611𝑒 − 9 32 0.0846 9.4608𝑒 − 10 −12.01611𝑒 − 11 39 0.0790 7.4072𝑒 − 12 −12.01611𝑒 − 13 46 0.1039 5.7954𝑒 − 14 −12.01611𝑒 − 15 61 0.1232 8.8818𝑒 − 16 −12.0161
For this example, Table 1 reports several experimental

results of Example 9 with 𝑛 = 200 by the algorithm P-
ADMM with different tolerance error, including the number
of iterations (denoted by “IT”), the CPU time (denoted
by “CPU”), the iterative error of the solution (denoted by
“ERR”), and the residual of the objective (denoted by “ROB”).
Figure 1 still draws the convergence curves of the residual of
the objective and the iterative error of the solution under the
tolerance tol = 1.0 × 10−15, respectively.

From Table 1, we can see that when using the P-ADMM
to solve Example 9, the CPU time cost is less than 0.2 seconds
and the number of the iterations is not bigger than 65 steps.
The obtained results, including the residual error ERR listed
in Table 1 and the convergence curves depicted in Figure 1,
verify the feasibility and efficiency of the P-ADMM scheme
for solving the small-scale problem. Besides, the last two
columns of Table 1 imply that we can choose a relatively tiny
stopping criterion (e.g., tol = 1.0 × 10−5) to obtain nearly the
same value of the objective and to save the CPU time.

Example 10. Considermodel (48) withΩ = {𝑥 ∈ R𝑛 | 𝑥 ≥ 0}
and 𝑐 = zeros (𝑛, 1) ;𝐴1 = ones (1, 𝑛) ;𝑏1 = 1;𝐴2 = 𝑟 ∈ R

1×𝑛;𝑏2 = 𝑝 ∈ R
+.

(50)

Then model (48) immediately becomes the Markowitz port-
folio optimization problem:

min 12𝑥𝑇𝐻𝑥
s.t. 𝑒𝑇𝑥 = 1,𝑟𝑇𝑥 = 𝑝,𝑥 ≥ 0,

(51)

where the matrix𝐻 ∈ R𝑛×𝑛 stands for the covariance matrix
of the return on the 𝑛 assets in the portfolio, the variable𝑥 denotes the vector of portfolio weights that represent the
amount of capital to be invested in each asset, 𝑟 is the vector of
expected returns of the different assets, and 𝑝 is a given total
return. In such case, the solution of (51) is sparse, which also
verifies why some researchers try to find the sparse solution
of the problem (51), see, for example, [18].

For Example 10, we test eleven large-scale experiments,
in which matrix 𝐻 is generated in the same way as that
of Example 9 and 𝑟, 𝑝 are, respectively, generated by the
MATLAB inner functions rand(1, 𝑛) and rand(1, 1). Table 2
reports some experimental results of this example with
different dimension 𝑛 ∈ [800, 2800], where the tolerance
error of the algorithm is set as tol = 10−5. The notations IT,
CPU, ERR, and ROB are the same meanings as mentioned in
Example 9, the number of the nonzero entries of the solution𝑥∗ is denoted by ‖𝑥∗‖0, and the sparsity ratio is defined as‖𝑥∗‖0/𝑛×100%.The convergence curves of the residual of the
objective and the iterative error of the solution for Example 10
with 𝑛 ∈ [800, 2800] are depicted in Figure 2.

An outstanding observation from Table 2 is that both the
number of the iteration (<25) and the CPU time (<16 s) are
small, and the CPU time increases along with the increase
of the dimension 𝑛 of 𝑥. Another observation is that the
sparsity ratio of the solution is over 50%, which implies that
more than half of the assets are not necessary to be invested
and also provides some useful suggestions for an investor in
finance. Both Table 2 and Figure 2 show that the P-ADMM
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Table 2: Experimental results of Example 10 by P-ADMM.𝑛 IT CPU ERR ROB 𝑥∗0 𝑥∗0 /𝑛
800 19 0.7516 9.5680𝑒 − 6 2.5181𝑒 − 4 444 55.50%
1000 19 1.2269 8.4815𝑒 − 6 1.7696𝑒 − 4 548 54.80%
1200 20 2.0222 7.4162𝑒 − 6 3.1982𝑒 − 4 651 54.25%
1400 22 3.4151 5.8193𝑒 − 6 4.3066𝑒 − 4 792 56.57%
1600 20 4.3842 6.1633𝑒 − 6 0.0089 877 54.81%
1800 19 5.4484 7.5718𝑒 − 6 0.0015 940 52.22%
2000 19 6.8253 8.5260𝑒 − 6 0.0207 1070 53.50%
2200 19 8.8434 9.5873𝑒 − 6 0.0039 1180 53.64%
2400 20 11.1692 9.6233𝑒 − 6 0.0482 1302 54.25%
2600 20 14.0278 5.9587𝑒 − 6 0.0289 1387 53.35%
2800 18 15.5509 6.4949𝑒 − 6 0.0067 1507 53.82%

5 10 15 20 250
IT

n = 2800

n = 2600

n = 2400

n = 2200

n = 2000

n = 1800

n = 1600

n = 1400

n = 1200

n = 1000

n = 800

0

0.5

1

1.5

2

2.5

Re
sid

ua
l o

f t
he

 o
bj

ec
tiv

e R
O

B

×10
5

(a)

n = 2800

n = 2600

n = 2400

n = 2200

n = 2000

n = 1800

n = 1600

n = 1400

n = 1200

n = 1000

n = 800

0

0.5

1

1.5

Ite
ra

tiv
e e

rr
or

 E
RR

5 10 15 20 250
IT

(b)

Figure 2: Convergence curves of the residual ROB (a) and the iterative error ERR (b).

(7) is robust for solving the large-scale Markowitz portfolio
optimization problem.

4. Conclusion

Instead of studying the optimization problem with one linear
constraint, in this paper, we concentrate our attentions on
the generalized bilinear programming problem and develop
a preconditioned alternating direction method. Based on the
traditional proof of the ADMM, the global convergence of
the proposed method is proved and the worst-case O(1/𝑡)
convergence rate in an ergodic sense is established. In
order to avoid the case that the subproblem has no explicit
solution, we still use a linearized strategy to approximately
tackle the involved subproblems in the proposed method.
Numerical results show that the proposed method is feasible
and efficient.

Nowadays,many researchers are interested in theADMM
which can be regarded as an alternating update method

for the variables and Lagrange multipliers for the sepa-
rable convex programming. For the nonseparable convex
optimization problem, the famous Taylor formula motivates
us to use the first-order approximation to linearly deal
with the objective function of the problem, and then one
can design the corresponding ADMM to solve it. Notic-
ing that the proposed method in current paper can be
applied to the above scenarios and can be also used to
solve the matrix minimization problem with two linear
constraints.
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