31,465 research outputs found

    Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix

    Full text link
    In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables pp\rightarrow\infty and the sample size nn\rightarrow\infty so that p/nc(0,+)p/n\rightarrow c\in (0, +\infty). The precision matrix is estimated directly, without inverting the corresponding estimator for the covariance matrix. The recent results from the random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The resulting distribution-free estimator has almost surely the minimum Frobenius loss. Additionally, we prove that the Frobenius norms of the inverse and of the pseudo-inverse sample covariance matrices tend almost surely to deterministic quantities and estimate them consistently. At the end, a simulation is provided where the suggested estimator is compared with the estimators for the precision matrix proposed in the literature. The optimal shrinkage estimator shows significant improvement and robustness even for non-normally distributed data.Comment: 26 pages, 5 figures. This version includes the case c>1 with the generalized inverse of the sample covariance matrix. The abstract was updated accordingl

    Evolution of the social network of scientific collaborations

    Full text link
    The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.Comment: 14 pages, 15 figure

    An Improvement in a Local Observer Design for Optimal State Feedback Control: The Case Study of HIV/AIDS Diffusion

    Get PDF
    The paper addresses the problem of an observer design for a nonlinear system for which a preliminary linear state feedback is designed but the full state is not measurable. Since a linear control assures the fulfilment of local approximated conditions, usually a linear observer is designed in these cases to estimate the state with estimation error locally convergent to zero. The case in which the control contains an external reference, like in regulations problems, is studied, showing that the solution obtained working with the linear approximation to get local solutions produces non consistent results in terms of local regions of convergence for the system and for the observer. A solution to this problem is provided, proposing a different choice for the observer design which allows to obtain all conditions locally satisfied on the same local region in the neighbourhood of a new equilibrium point. The case study of an epidemic spread control is used to show the effectiveness of the procedure. The linear control with regulation term is present in this case because the problem is reconducted to a Linear Quadratic Regulation problem. Simulation results show the differences between the two approaches and the effectiveness of the proposed on

    Breakdown of the standard Perturbation Theory and Moving Boundary Approximation for "Pulled" Fronts

    Get PDF
    The derivation of a Moving Boundary Approximation or of the response of a coherent structure like a front, vortex or pulse to external forces and noise, is generally valid under two conditions: the existence of a separation of time scales of the dynamics on the inner and outer scale and the existence and convergence of solvability type integrals. We point out that these conditions are not satisfied for pulled fronts propagating into an unstable state: their relaxation on the inner scale is power law like and in conjunction with this, solvability integrals diverge. The physical origin of this is traced to the fact that the important dynamics of pulled fronts occurs in the leading edge of the front rather than in the nonlinear internal front region itself. As recent work on the relaxation and stochastic behavior of pulled fronts suggests, when such fronts are coupled to other fields or to noise, the dynamical behavior is often qualitatively different from the standard case in which fronts between two (meta)stable states or pushed fronts propagating into an unstable state are considered.Comment: pages Latex, submitted to a special issue of Phys. Rep. in dec. 9
    corecore