11,066 research outputs found

    Detection of Fog Network Data Telemetry Using Data Plane Programming

    Get PDF
    Fog computing has been introduced to deliver Cloud-based services to the Internet of Things (IoT) devices. It locates geographically closer to IoT devices than Cloud networks and aims at offering latency-critical computation and storage to end-user applications. To leverage Fog computing for computational offloading from end-users, it is important to optimize resources in the Fog nodes dynamically. Provisioning requires knowledge of the current network state, thus, monitoring mechanisms play a significant role to conduct resource management in the network. To keep track of the state of devices, we use P4, a data-plane programming language, to describe data-plane abstraction of Fog network devices and collect telemetry without the intervention of the control plane or adding a big amount of overhead. In this paper, we propose a software-defined architecture with a programmable data plane for data telemetry detection that can be integrated into Fog network resource management. After the implementation of detecting data telemetry based on In-Band Network Telemetry (INT) within a Mininet simulation, we show the available features and preliminary Fog resource management based on the collected data telemetry and future telemetry-based traffic engineering possibilities

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201
    • …
    corecore