2,182 research outputs found

    A QoS-Aware Routing Protocol for Real-time Applications in Wireless Sensor Networks

    Get PDF
    The paper presents a quality of service aware routing protocol which provides low latency for high priority packets. Packets are differentiated based on their priority by applying queuing theory. Low priority packets are transferred through less energy paths. The sensor nodes interact with the pivot nodes which in turn communicate with the sink node. This protocol can be applied in monitoring context aware physical environments for critical applications.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1001.5339 by other author

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Hop-by-hop Channel - Alert Routing to Congestion Control in Wireless Sensor Networks

    Get PDF
    One of the major challenges in wireless sensor networks (WSNs) research is to prevent traffic congestion without compromising with the energy of the sensor nodes. Network congestion leads to packet loss, throughput impairment, and energy waste. To address this issue in this paper, a distributed traffic-aware routing scheme with a capacity of adjusting the data transmission rate of nodes is proposed for multi-sink wireless sensor networks that effectively distribute traffic from the source to sink nodes. Our algorithm is designed through constructing a hybrid virtual gradient field using depth and normalized traffic loading to routing and providing a balance between optimal paths and possible congestion on routes toward those sinks. The simulation results indicate that the proposed solution can improve the utilization of network resources, reduce unnecessary packet retransmission, and significantly improve the performance of WSNs. Keywords: Wireless sensor networks; Traffic-aware; Routing; Data transmission rate; Congestion; Gradien

    An efficient reconfigurable geographic routing congestion control algorithm for wireless sensor networks

    Get PDF
    In recent times, huge data is transferred from source to destination through multi path in wireless sensor networks (WSNs). Due to this more congestion occurs in the communication path. Hence, original data will be lost and delay problems arise at receiver end. The above-mentioned drawbacks can be overcome by the proposed efficient reconfigurable geographic routing congestion control (RgRCC) algorithm for wireless sensor networks. the proposed algorithm efficiently finds the node’s congestion status with the help queue length’s threshold level along with its change rate. Apart from this, the proposed algorithm re-routes the communication path to avoid congestion and enhances the strength of scalability of data communication in WSNs. The proposed algorithm frequently updates the distance between the nodes and by-pass routing holes, common for geographical routing. when the nodes are at the edge of the hole, it will create congestion between the nodes in WSNs. Apart from this, more nodes sink due to congestion. it can be reduced with the help of the proposed RgRCC algorithm. As per the simulation analysis, the proposed work indicates improved performance in comparison to conventional algorithm. By effectively identifying the data congestion in WSNs with high scalability rate as compared to conventional method
    • …
    corecore