4,880 research outputs found

    Reducing the size and number of linear programs in a dynamic Gr\"obner basis algorithm

    Full text link
    The dynamic algorithm to compute a Gr\"obner basis is nearly twenty years old, yet it seems to have arrived stillborn; aside from two initial publications, there have been no published followups. One reason for this may be that, at first glance, the added overhead seems to outweigh the benefit; the algorithm must solve many linear programs with many linear constraints. This paper describes two methods of reducing the cost substantially, answering the problem effectively.Comment: 11 figures, of which half are algorithms; submitted to journal for refereeing, December 201

    On the pre-metric foundations of wave mechanics I: massless waves

    Full text link
    The mechanics of wave motion in a medium are founded in conservation laws for the physical quantities that the waves carry, combined with the constitutive laws of the medium, and define Lorentzian structures only in degenerate cases of the dispersion laws that follow from the field equations. It is suggested that the transition from wave motion to point motion is best factored into an intermediate step of extended matter motion, which then makes the dimension-codimension duality of waves and trajectories a natural consequence of the bicharacteristic (geodesic) foliation associated with the dispersion law. This process is illustrated in the conventional case of quadratic dispersion, as well as quartic ones, which include the Heisenberg-Euler dispersion law. It is suggested that the contributions to geodesic motion from the non-quadratic nature of a dispersion law might represent another source of quantum fluctuations about classical extremals, in addition to the diffraction effects that are left out by the geometrical optics approximation.Comment: 25 pages, 1 figur

    Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes

    Full text link
    The Laguerre symmetric functions introduced in the note are indexed by arbitrary partitions and depend on two continuous parameters. The top degree homogeneous component of every Laguerre symmetric function coincides with the Schur function with the same index. Thus, the Laguerre symmetric functions form a two-parameter family of inhomogeneous bases in the algebra of symmetric functions. These new symmetric functions are obtained from the N-variate symmetric polynomials of the same name by a procedure of analytic continuation. The Laguerre symmetric functions are eigenvectors of a second order differential operator, which depends on the same two parameters and serves as the infinitesimal generator of an infinite-dimensional diffusion process X(t). The process X(t) admits approximation by some jump processes related to one more new family of symmetric functions, the Meixner symmetric functions. In equilibrium, the process X(t) can be interpreted as a time-dependent point process on the punctured real line R\{0}, and the point configurations may be interpreted as doubly infinite collections of particles of two opposite charges with log-gas-type interaction. The dynamical correlation functions of the equilibrium process have determinantal form: they are given by minors of the so-called extended Whittaker kernel, introduced earlier in a paper by Borodin and the author.Comment: LaTex, 26 p

    Laguerre and Meixner orthogonal bases in the algebra of symmetric functions

    Full text link
    Analogs of Laguerre and Meixner orthogonal polynomials in the algebra of symmetric functions are studied. This is a detailed exposition of part of the results announced in arXiv:1009.2037. The work is motivated by a connection with a model of infinite-dimensional Markov dynamics.Comment: Latex, 52p

    Sparse Gr\"obner Bases: the Unmixed Case

    Get PDF
    Toric (or sparse) elimination theory is a framework developped during the last decades to exploit monomial structures in systems of Laurent polynomials. Roughly speaking, this amounts to computing in a \emph{semigroup algebra}, \emph{i.e.} an algebra generated by a subset of Laurent monomials. In order to solve symbolically sparse systems, we introduce \emph{sparse Gr\"obner bases}, an analog of classical Gr\"obner bases for semigroup algebras, and we propose sparse variants of the F5F_5 and FGLM algorithms to compute them. Our prototype "proof-of-concept" implementation shows large speed-ups (more than 100 for some examples) compared to optimized (classical) Gr\"obner bases software. Moreover, in the case where the generating subset of monomials corresponds to the points with integer coordinates in a normal lattice polytope PRn\mathcal P\subset\mathbb R^n and under regularity assumptions, we prove complexity bounds which depend on the combinatorial properties of P\mathcal P. These bounds yield new estimates on the complexity of solving 00-dim systems where all polynomials share the same Newton polytope (\emph{unmixed case}). For instance, we generalize the bound min(n1,n2)+1\min(n_1,n_2)+1 on the maximal degree in a Gr\"obner basis of a 00-dim. bilinear system with blocks of variables of sizes (n1,n2)(n_1,n_2) to the multilinear case: nimax(ni)+1\sum n_i - \max(n_i)+1. We also propose a variant of Fr\"oberg's conjecture which allows us to estimate the complexity of solving overdetermined sparse systems.Comment: 20 pages, Corollary 6.1 has been corrected, ISSAC 2014, Kobe : Japan (2014

    Inhomogeneous extreme forms

    Get PDF
    G.F. Voronoi (1868-1908) wrote two memoirs in which he describes two reduction theories for lattices, well-suited for sphere packing and covering problems. In his first memoir a characterization of locally most economic packings is given, but a corresponding result for coverings has been missing. In this paper we bridge the two classical memoirs. By looking at the covering problem from a different perspective, we discover the missing analogue. Instead of trying to find lattices giving economical coverings we consider lattices giving, at least locally, very uneconomical ones. We classify local covering maxima up to dimension 6 and prove their existence in all dimensions beyond. New phenomena arise: Many highly symmetric lattices turn out to give uneconomical coverings; the covering density function is not a topological Morse function. Both phenomena are in sharp contrast to the packing problem.Comment: 22 pages, revision based on suggestions by referee, accepted in Annales de l'Institut Fourie

    Probing spatial homogeneity with LTB models: a detailed discussion

    Full text link
    Do current observational data confirm the assumptions of the cosmological principle, or is there statistical evidence for deviations from spatial homogeneity on large scales? To address these questions, we developed a flexible framework based on spherically symmetric, but radially inhomogeneous Lemaitre-Tolman-Bondi (LTB) models with synchronous Big Bang. We expanded the (local) matter density profile in terms of flexible interpolation schemes and orthonormal polynomials. A Monte Carlo technique in combination with recent observational data was used to systematically vary the shape of these profiles. In the first part of this article, we reconsider giant LTB voids without dark energy to investigate whether extremely fine-tuned mass profiles can reconcile these models with current data. While the local Hubble rate and supernovae can easily be fitted without dark energy, however, model-independent constraints from the Planck 2013 data require an unrealistically low local Hubble rate, which is strongly inconsistent with the observed value; this result agrees well with previous studies. In the second part, we explain why it seems natural to extend our framework by a non-zero cosmological constant, which then allows us to perform general tests of the cosmological principle. Moreover, these extended models facilitate explorating whether fluctuations in the local matter density profile might potentially alleviate the tension between local and global measurements of the Hubble rate, as derived from Cepheid-calibrated type Ia supernovae and CMB experiments, respectively. We show that current data provide no evidence for deviations from spatial homogeneity on large scales. More accurate constraints are required to ultimately confirm the validity of the cosmological principle, however.Comment: 18 pages, 12 figures, 2 tables; accepted for publication in A&

    Anisotropic multiple scattering in diffuse media

    Get PDF
    The multiple scattering of scalar waves in diffusive media is investigated by means of the radiative transfer equation. This approach amounts to a resummation of the ladder diagrams of the Born series; it does not rely on the diffusion approximation. Quantitative predictions are obtained, concerning various observables pertaining to optically thick slabs, such as the mean angle-resolved reflected and transmitted intensities, and the shape of the enhanced backscattering cone. Special emphasis is put on the dependence of these quantities on the anisotropy of the cross-section of the individual scatterers, and on the internal reflections due to the optical index mismatch at the boundaries of the sample. The regime of very anisotropic scattering, where the transport mean free path \ell^* is much larger than the scattering mean free path \ell, is studied in full detail. For the first time the relevant Schwarzschild-Milne equation is solved exactly in the absence of internal reflections, and asymptotically in the regime of a large index mismatch. An unexpected outcome concerns the angular width of the enhanced backscattering cone, which is predicted to scale as Δθλ/\Delta\theta\sim\lambda/\sqrt{\ell\ell^*}, in contrast with the generally accepted λ/\lambda/\ell^* law, derived within the diffusion approximation.Comment: 53 pages TEX, including 2 tables. The 4 figures are sent at reques
    corecore