74 research outputs found

    The Bernstein Function: A Unifying Framework of Nonconvex Penalization in Sparse Estimation

    Full text link
    In this paper we study nonconvex penalization using Bernstein functions. Since the Bernstein function is concave and nonsmooth at the origin, it can induce a class of nonconvex functions for high-dimensional sparse estimation problems. We derive a threshold function based on the Bernstein penalty and give its mathematical properties in sparsity modeling. We show that a coordinate descent algorithm is especially appropriate for penalized regression problems with the Bernstein penalty. Additionally, we prove that the Bernstein function can be defined as the concave conjugate of a Ο†\varphi-divergence and develop a conjugate maximization algorithm for finding the sparse solution. Finally, we particularly exemplify a family of Bernstein nonconvex penalties based on a generalized Gamma measure and conduct empirical analysis for this family

    Likelihood Adaptively Modified Penalties

    Full text link
    A new family of penalty functions, adaptive to likelihood, is introduced for model selection in general regression models. It arises naturally through assuming certain types of prior distribution on the regression parameters. To study stability properties of the penalized maximum likelihood estimator, two types of asymptotic stability are defined. Theoretical properties, including the parameter estimation consistency, model selection consistency, and asymptotic stability, are established under suitable regularity conditions. An efficient coordinate-descent algorithm is proposed. Simulation results and real data analysis show that the proposed method has competitive performance in comparison with existing ones.Comment: 42 pages, 4 figure

    One-step estimator paths for concave regularization

    Full text link
    The statistics literature of the past 15 years has established many favorable properties for sparse diminishing-bias regularization: techniques which can roughly be understood as providing estimation under penalty functions spanning the range of concavity between L0L_0 and L1L_1 norms. However, lasso L1L_1-regularized estimation remains the standard tool for industrial `Big Data' applications because of its minimal computational cost and the presence of easy-to-apply rules for penalty selection. In response, this article proposes a simple new algorithm framework that requires no more computation than a lasso path: the path of one-step estimators (POSE) does L1L_1 penalized regression estimation on a grid of decreasing penalties, but adapts coefficient-specific weights to decrease as a function of the coefficient estimated in the previous path step. This provides sparse diminishing-bias regularization at no extra cost over the fastest lasso algorithms. Moreover, our `gamma lasso' implementation of POSE is accompanied by a reliable heuristic for the fit degrees of freedom, so that standard information criteria can be applied in penalty selection. We also provide novel results on the distance between weighted-L1L_1 and L0L_0 penalized predictors; this allows us to build intuition about POSE and other diminishing-bias regularization schemes. The methods and results are illustrated in extensive simulations and in application of logistic regression to evaluating the performance of hockey players.Comment: Data and code are in the gamlr package for R. Supplemental appendix is at https://github.com/TaddyLab/pose/raw/master/paper/supplemental.pd

    Efficient Graph Laplacian Estimation by Proximal Newton

    Full text link
    The Laplacian-constrained Gaussian Markov Random Field (LGMRF) is a common multivariate statistical model for learning a weighted sparse dependency graph from given data. This graph learning problem can be formulated as a maximum likelihood estimation (MLE) of the precision matrix, subject to Laplacian structural constraints, with a sparsity-inducing penalty term. This paper aims to solve this learning problem accurately and efficiently. First, since the commonly used β„“1\ell_1-norm penalty is inappropriate in this setting and may lead to a complete graph, we employ the nonconvex minimax concave penalty (MCP), which promotes sparse solutions with lower estimation bias. Second, as opposed to existing first-order methods for this problem, we develop a second-order proximal Newton approach to obtain an efficient solver, utilizing several algorithmic features, such as using Conjugate Gradients, preconditioning, and splitting to active/free sets. Numerical experiments demonstrate the advantages of the proposed method in terms of both computational complexity and graph learning accuracy compared to existing methods
    • …
    corecore