3 research outputs found

    Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis

    Get PDF
    Background: Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. Methods: To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. Results: For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737. mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Conclusions: Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. © 2014 Elsevier Ltd.Yamaguchi S., Tsutsui K., Satake K., et al. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis. Computers in Biology and Medicine 53, 42 (2014); https://doi.org/10.1016/j.compbiomed.2014.07.012

    Mechanics of Dynamic Needle Insertion into a Biological Material

    Full text link

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S
    corecore