2 research outputs found

    Simulating the Mammalian Blastocyst - Molecular and Mechanical Interactions Pattern the Embryo

    Get PDF
    Mammalian embryogenesis is a dynamic process involving gene expression and mechanical forces between proliferating cells. The exact nature of these interactions, which determine the lineage patterning of the trophectoderm and endoderm tissues occurring in a highly regulated manner at precise periods during the embryonic development, is an area of debate. We have developed a computational modeling framework for studying this process, by which the combined effects of mechanical and genetic interactions are analyzed within the context of proliferating cells. At a purely mechanical level, we demonstrate that the perpendicular alignment of the animal-vegetal (a-v) and embryonic-abembryonic (eb-ab) axes is a result of minimizing the total elastic conformational energy of the entire collection of cells, which are constrained by the zona pellucida. The coupling of gene expression with the mechanics of cell movement is important for formation of both the trophectoderm and the endoderm. In studying the formation of the trophectoderm, we contrast and compare quantitatively two hypotheses: (1) The position determines gene expression, and (2) the gene expression determines the position. Our model, which couples gene expression with mechanics, suggests that differential adhesion between different cell types is a critical determinant in the robust endoderm formation. In addition to differential adhesion, two different testable hypotheses emerge when considering endoderm formation: (1) A directional force acts on certain cells and moves them into forming the endoderm layer, which separates the blastocoel and the cells of the inner cell mass (ICM). In this case the blastocoel simply acts as a static boundary. (2) The blastocoel dynamically applies pressure upon the cells in contact with it, such that cell segregation in the presence of differential adhesion leads to the endoderm formation. To our knowledge, this is the first attempt to combine cell-based spatial mechanical simulations with genetic networks to explain mammalian embryogenesis. Such a framework provides the means to test hypotheses in a controlled in silico environment

    Chemotaxis-based spatial self-organization algorithms

    Get PDF
    Self-organization is a process that increases the order of a system as a result of local interactions among low-level, simple components, without the guidance of an outside source. Spatial self-organization is a process in which shapes and structures emerge at a global level from collective movements of low level shape primitives. Spatial self-organization is a stochastic process, and the outcome of the aggregation cannot necessarily be guaranteed. Despite the inherent ambiguity, self-organizing complex systems arise everywhere in nature. Motivated by the ability of living cells to form specific shapes and structures, we develop two self-organizing systems towards the ultimate goal of directing the spatial self-organizing process. We first develop a self-sorting system composed of a mixture of cells. The system consistently produces a sorted structure. We then extend the sorting system to a general shape formation system. To do so, we introduce morphogenetic primitives (MP), defined as software agents, which enable self-organizing shape formation of user-defined structures through a chemotaxis paradigm. One challenge that arises from the shape formation process is that the process may form two or more stable final configurations. In order to direct the self-organizing process, we find a way to characterize the macroscopic configuration of the MP swarm. We demonstrate that statistical moments of the primitives' locations can successfully capture the macroscopic structure of the aggregated shape. We do so by predicting the final configurations produced by our spatial self-organization system at an early stage in the process using features based on the statistical moments. At the next stage, we focus on developing a technique to control the outcome of bifurcating aggregations. We identify thresholds of the moments and generate biased initial conditions whose statistical moments meet the thresholds. By starting simulations with biased, random initial configurations, we successfully control the aggregation for a number of swarms produced by the agent-based shape formation system. This thesis demonstrates that chemotaxis can be used as a paradigm to create an agent- based spatial self-organization system. Furthermore, statistical moments of the swarm can be used to robustly predict and control the outcomes of the aggregation process.Ph.D., Computer Science -- Drexel University, 201
    corecore