
Chemotaxis-based Spatial Self-Organization Algorithms

A Thesis

Submitted to the Faculty

of

Drexel University

by

Linge Bai

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

August 2014

c© Copyright 2014
Linge Bai. All Rights Reserved.

ii

Dedications

I dedicate this thesis to my daughter, Genevieve Yi Lass. May you find science fascinating.

iii

Acknowledgments

I would like to thank my advisor, Dr. David Breen, for his guidance and support during my

eight year journey of graduate school, especially for shaping me into an independent scholar

with an open mind. I truly enjoyed the intellectual freedom that he has provided for me.

Additionally, I would like to thank Dr. Robert Gilmore, Dr. Santiago Ontañón Villar and

Dr. Christian Kuehn for stimulating discussions and helpful ideas towards my research.

I would also like to thank my husband, Robert Lass, for his technical and financial sup-

port during my extended “childhood”. Thank you for providing our daughter, Genevieve,

with a comfortable environment to grow up in during these years. Many thanks to my

parents for nurturing me into a curious person and for not interfering with my decisions.

Lastly, I would like to thank my friends and colleagues during my graduate school years.

Many thanks to Manolya McCormick, Geoffery Oxholm, Kamelia Aryafar, Yuan Duan,

Gabe Schwartz, Steve Lombardi, Yusuf Osmanlioglu, Ehsan Khosroshahi and many others,

for having interesting conversations with me and for making my school years enjoyable.

I feel fortunate that I had the opportunity to attend graduate school and to obtain a

PhD degree. To me, my graduate school experience is invaluable. It has turned me from

a passive student who receives information into an active scholar who seeks knowledge. It

gave me a computational mindset and the quantitative skills needed to evaluate situations

and make decisions. I hope my eagerness for knowledge never fades and that my curious

inner child never dies.

iv

Table of Contents

List of Figures . viii

List of Tables . xiii

Abstract . xiv

1. Introduction . 1

2. Self-Sorting Primitives . 9

2.1 Introduction . 9

2.2 Related Work . 13

2.3 Chemotaxis-Based Agent Sorting Model . 16

2.3.1 Chemotaxis . 17

2.3.2 Attachments and Detachments . 22

2.3.3 Agent Actions . 23

2.4 Results . 27

2.5 Parametric Studies . 30

2.5.1 Sorting Quality Evaluation . 30

2.5.2 Agent Parameters . 32

2.5.3 Environment Parameters . 41

2.6 Conclusion . 47

3. General Shape Formation Primitives . 49

3.1 Introduction . 49

3.2 Related Work . 51

3.3 Approach Overview . 56

v

3.4 Morphogenetic Primitives . 58

3.4.1 2-D Biological Cell Aggregation Simulation 58

3.4.2 MP Design Principles . 59

3.4.3 Movement . 59

3.4.4 Rotation . 60

3.4.5 Randomness in the System . 61

3.5 A Genetic Programming Framework . 62

3.5.1 Genetic Programming . 62

3.5.2 Chemical Field Evolution via Genetic Programming 65

3.5.3 Fitness Function . 66

3.5.4 GP Parameters . 68

3.5.5 Distributed Master-Slave Model . 70

3.6 Results . 70

3.6.1 MPs with Fixed Orientation . 70

3.6.2 Rotating, Self-Aligning MPs . 76

3.6.3 Chemical Field Visualization . 80

3.7 Discussion . 83

3.7.1 Generating Results . 83

3.7.2 Robustness . 84

3.7.3 Dynamic Stability . 85

3.7.4 Running Time . 86

3.8 Conclusion . 87

4. Predicting Spatial Self-Organization . 89

4.1 Introduction . 89

TABLE OF CONTENTS TABLE OF CONTENTS

vi

4.2 Related Work . 89

4.3 System Modifications . 91

4.4 Moment Analysis . 92

4.4.1 Moment Calculation . 92

4.4.2 Using Support Vector Machines . 94

4.5 Results . 96

4.6 Conclusion . 99

5. Directing Spatial Self-Organization . 100

5.1 Introduction . 100

5.2 Related Work . 101

5.3 Biased Initial Conditions . 102

5.3.1 Statistical Moments . 102

5.3.2 Generating Constrained Biased Distributions 105

5.4 Results . 107

5.4.1 Quarter-moon Shape . 110

5.4.2 Ellipse Shape . 112

5.4.3 Discs Shape . 114

5.4.4 Parallel Line Shape . 116

5.5 Conclusion . 119

6. Conclusion . 120

Bibliography . 123

Appendix A: Calculating Center of Mass in an Unbounded 2D Environ-
ment . 136

A.1 Introduction . 136

A.2 Algorithm Description . 139

TABLE OF CONTENTS TABLE OF CONTENTS

vii

A.3 Examples . 142

Vita . 145

viii

List of Figures

1.1 Self-organization in nature. (Photos by Christoffer Rasmussen and Brandon Cole) 1

1.2 High-speed nuclear imaging of the nematode embryo. (Image by Yicong Wu) . 2

2.1 Chemotaxis-based cell aggregation simulation. 9

2.2 Comparison of live and simulated data. (left) Microscope image from in vitro
experiment. (right) Visualization of simulated aggregation. 10

2.3 Computational flow of cell aggregation simulation per time step per cell. 11

2.4 Initial and ending configurations of a self-organizing two-agent-type system (blue
T1 agents and red T2 agents). The quality value of the initial state is 0.52 and
final structure is 1.60. 12

2.5 A single agent has radius rc and eight chemoattractant receptors identified as
ri. The agent’s chemical field cannot be sensed past RMax. 18

2.6 Probability of T2 agents responding to a chemoattractant. 21

2.7 Computational flow chart for a T1 agent during one time step of the agent sorting
algorithm. 24

2.8 Computational flow chart for a T2 agent during one time step of the agent sorting
algorithm. 25

2.9 Simulation of self-organizing heterotypic agents sorted into a layered structure.
T1 (blue) agents emit a chemical that attracts other T1 agents, forming a central
blue core. Then they emit a second chemical that attracts T2 (red) agents,
forming the outer layer. 28

2.10 Effect of chemoattractant gradient response λ1 and TS on sorting. (a) λ1 = 1.0;
(b) TS = 6 hours. 32

2.11 Effect of PAttach on sorting, (PAttach(blue−blue), PAttach(blue−red), PAttach(red−
red)). (a) (50%, 100%, 100%); (b) (50%, 50%, 100%); (c) (100%, 10%, 100%);
(d) (100%, 100%, 100%). 34

2.12 Effect of PDetach on sorting. (a) PDetach = 0; (b) PDetach = 0.1. 34

2.13 Effect of changing PR for T1 agents (blue). (a) PR = 10%; (b) PR = 20%; (c)
PR = 80%; (d) PR = 100%. 35

ix

2.14 Effect of constant PR for T2 agents (red). (a) PR = 10%; (b) PR = 30%; (c)
PR = 50%; (d) PR = 75%. 36

2.15 Effect of changing RMax for both T1 and T2 agents. (a) RMax = 100; (b) RMax =
150; (c) RMax = 200; (d) RMax = 250; (e) RMax = 450; (d) RMax = 500. . . . 39

2.16 Effect of agent density. (a) 8002 grid, 400 agents, density: 0.0006 agents/unit2;
(b) 7002 grid, 400 agents, density: 0.0008 agents/unit2; (c) 5002 grid, 200
agents, density: 0.0008 agents/unit2; (d) 5002 grid, 500 agents, density: 0.0020
agents/unit2; (e) 5002 grid, 600 agents, density: 0.0024 agents/unit2; (f) 4002

grid, 400 agents, density: 0.0025 agents/unit2. 42

2.17 (a) Structure formed after decreasing the magnitude of noise during movement.
(b) Increasing the magnitude of the movement noise disrupts the sorting process. 44

2.18 Initial agent distributions and final, sorted results for a variety of initial condi-
tions. (a) Gaussian distributed initial condition, best sorted result; (b) Landau
distributed initial conditions, best sorted result; (c) Red T2 agents with Gaus-
sian distributed initial condition, blue T1 agents with Landau distributed initial
conditions, best sorted result. 46

3.1 Morphogenetic primitives self-organizing into a gear shape. 50

3.2 Overview of the genetic programming process that produces the chemical field
functions of morphogenetic primitives. 55

3.3 Overview of the steps executed in the chemotaxis simulator. 57

3.4 Genetic programming flowchart. 64

3.5 Aggregated MPs are aligned with a target shape. The square of the ratio of
overlapping black pixels and the total number of black pixels in the target shape
gives the fitness value for the aggregate. 67

3.6 Ellipse: (left) Target shape. (left middle) Self-organized MPs. Diamond: (right
middle) Target shape. (right) Self-organized MPs. 72

3.7 Hourglass: (left) Target shape. (left middle) Self-organized MPs. Cross: (right
middle) Target shape. (right) Self-organized MPs. 72

3.8 Letter ‘b’: (left) Target shape. (left middle) Self-organized MPs. Letter ‘S’:
(right middle) Target shape. (right) Self-organized MPs. 72

3.9 Star: (left) Target shape. (left middle) Self-organized MPs. Triangle: (right
middle) Target shape. (right) Self-organized MPs. 72

3.10 Unexpected shapes produced by a variety of MPs. 75

LIST OF FIGURES LIST OF FIGURES

x

3.11 MPs self-aligning and self-organizing into an ellipse. 78

3.12 MPs self-aligning and self-organizing into a diamond. 78

3.13 MPs self-aligning and self-organizing into an hourglass. 78

3.14 MPs self-aligning and self-organizing into a cross. 78

3.15 MPs self-aligning and self-organizing into a ‘b’. 79

3.16 MPs self-aligning and self-organizing into an ‘S’. 79

3.17 MPs self-aligning and self-organizing into a star. 79

3.18 MPs self-aligning and self-organizing into a triangle. 79

3.19 “Static” chemical fields emitted by the star, diamond and letter ‘b’ MPs. . . . 80

3.20 Dynamic chemical field emitted by the ellipse MP. 81

3.21 Dynamic chemical field emitted by the letter ‘S’ MP. 81

3.22 Cumulative chemical field emitted by a set of MPs self-organizing into an ellipse
shape. 82

3.23 Cumulative chemical field emitted by a set of MPs self-organizing into an hour-
glass shape. 82

3.24 Cumulative chemical field emitted by a set of MPs self-organizing into a star
shape. 82

3.25 Cumulative chemical field emitted by a set of MPs self-organizing into a triangle. 82

4.1 MPs self-organizing into a pinwheel shape. 90

4.2 Shape evolution of the quarter-moon. 96

4.3 Shape evolution of the ellipse. 97

4.4 Shape evolution of the discs structure. 97

4.5 Shape evolution of the line segments structure. 98

5.1 Morphogenetic Primitives self-organizing into a star shape. 101

5.2 Shape aggregation of the quarter-moon MPs. 103

LIST OF FIGURES LIST OF FIGURES

xi

5.3 Skewness of the x coordinate of the quarter-moon shapes over time, beginning
with unbiased, random initial conditions. 104

5.4 (top row) Biased initial conditions ((a) x skewness = -0.268, (b) y kurtosis =
2.150, (c) x variance = 9,596, (d) x kurtosis = 1.88) that robustly evolve (bottom
row) into (a) a right-facing quarter-moon, (b) a single ellipse, (c) three discs and
(d) two line segments. 107

5.5 Skewness of the x coordinate of the quarter-moon shapes over time, beginning
with biased, random initial conditions with skewness less than −0.178. 111

5.6 Skewness of the x coordinate of the quarter-moon shapes over time, beginning
with biased, random initial conditions with skewness greater than 0.178. 111

5.7 Shape aggregation of the ellipse MPs. 112

5.8 Kurtosis of the y coordinate of the ellipse shapes over time, beginning with
unbiased, random initial conditions. 113

5.9 Kurtosis of the y coordinate of the ellipse shapes over time, beginning with
biased, random initial conditions with kurtosis greater than 2.11. 113

5.10 Shape aggregation of the discs MPs. 114

5.11 Variance of the x coordinate of the discs shapes over time, beginning with unbi-
ased, random initial conditions. 115

5.12 Variance of the x coordinate of the discs shapes over time, beginning with biased,
random initial conditions with variance less than 10, 270. 115

5.13 Variance of the x coordinate of the discs shapes over time, beginning with biased,
random initial conditions with kurtosis less than 2.09. 116

5.14 Shape aggregation of the line segment MPs. 117

5.15 Kurtosis of the x coordinate of the line segment shapes over time, beginning
with unbiased, random initial conditions. 117

5.16 Kurtosis of the x coordinate of the line segment shapes over time, beginning
with biased, random initial conditions with kurtosis greater than 2.29. 118

5.17 Kurtosis of the x coordinate of the line segment shapes over time, beginning
with biased, random initial conditions with variance less than 1.90. 118

A.1 (left) Original image and (right) incorrect centered result - example 1. 137

A.2 (left) Original image and (right) incorrect centered result - example 2. 137

LIST OF FIGURES LIST OF FIGURES

xii

A.3 Applying the COM algorithm in 1D. 142

A.4 (left) Original image and (right) desired centered result - example 1. 143

A.5 (left) Original image and (right) desired centered result - example 2. 143

A.6 (left) Original image and (right) desired centered result - example 3. 144

A.7 (left) Original image and (right) desired centered result - example 4. 144

xiii

List of Tables

2.1 Actions taken by a virtual cell. 11

2.2 Parameter values that produce sorted structure with the highest quality value. 29

2.3 Parameter value ranges that produce desired sorted structure. 40

3.1 Summary of shapes, field functions, and the generation that produced the function. 73

3.2 Robustness of the aggregation simulations with fixed orientation MPs and self-
aligning MPs. Listed are the percentage of simulations out of 100 runs that
produced a desired shape for a variety of MPs. 85

4.1 Dataset information and prediction accuracies for bifurcating shapes at 10% (5%
for ellipse) of simulation time. 95

5.1 Table summarizing results generated with unbiased and biased initial conditions. 109

xiv

Abstract
Chemotaxis-based Spatial Self-Organization Algorithms

Linge Bai
David E. Breen, Ph.D.

Self-organization is a process that increases the order of a system as a result of local

interactions among low-level, simple components, without the guidance of an outside source.

Spatial self-organization is a process in which shapes and structures emerge at a global

level from collective movements of low level shape primitives. Spatial self-organization is a

stochastic process, and the outcome of the aggregation cannot necessarily be guaranteed.

Despite the inherent ambiguity, self-organizing complex systems arise everywhere in nature.

Motivated by the ability of living cells to form specific shapes and structures, we develop

two self-organizing systems towards the ultimate goal of directing the spatial self-organizing

process. We first develop a self-sorting system composed of a mixture of cells. The system

consistently produces a sorted structure. We then extend the sorting system to a general

shape formation system. To do so, we introduce morphogenetic primitives (MP), defined

as software agents, which enable self-organizing shape formation of user-defined structures

through a chemotaxis paradigm.

One challenge that arises from the shape formation process is that the process may form

two or more stable final configurations. In order to direct the self-organizing process, we

find a way to characterize the macroscopic configuration of the MP swarm. We demonstrate

that statistical moments of the primitives’ locations can successfully capture the macroscopic

structure of the aggregated shape. We do so by predicting the final configurations produced

by our spatial self-organization system at an early stage in the process using features based

xv

on the statistical moments. At the next stage, we focus on developing a technique to

control the outcome of bifurcating aggregations. We identify thresholds of the moments

and generate biased initial conditions whose statistical moments meet the thresholds. By

starting simulations with biased, random initial configurations, we successfully control the

aggregation for a number of swarms produced by the agent-based shape formation system.

This thesis demonstrates that chemotaxis can be used as a paradigm to create an agent-

based spatial self-organization system. Furthermore, statistical moments of the swarm can

be used to robustly predict and control the outcomes of the aggregation process.

Abstract

1

Chapter 1: Introduction

Self-organization is a process in which patterns at the macroscopic level emerge from nu-

merous interactions at the microscopic level based on local interactions. The execution of

the local interaction rules are based only on local information, without reference to the

global pattern or guidance by an outside source [52]. Bird flocking and fish schooling are

examples of self-organization phenomena, as in Figure 1.1. The coordinated behavior of a

flock of birds or a school of fish emerges from low-level local interaction of the individuals,

without a central leader in the system [20].

Figure 1.1: Self-organization in nature. (Photos by Christoffer Rasmussen and Bran-
don Cole)

Biological systems are based on the collective behaviors of a large number of simple and

unreliable parts. In cell biology, each cell has a life cycle and is able to sense the environment,

emit chemicals into the environment, proliferate and die. Cells interact with each other

through the environment they live in. These behaviors at a microscopic cell level lead to

the growth of macroscopic organisms. Cells proliferate, move and aggregate to create tissues

and structures. This process, called morphogenesis, is one of the fundamental components

2

involved in the development of complex organisms [49], as in Figure 1.2. Chemotaxis is one

of the mechanisms of cell interaction, with each cell emitting chemicals which diffuse into

the surrounding environment. Neighboring cells detect the overall chemical concentration

at their surfaces and respond to the chemical stimulus by moving either towards or away

from the source [36].

Figure 1.2: High-speed nuclear imaging of the nematode embryo. (Image by Yicong
Wu)

In engineering, self-organization can provide a framework for distributed multi-agent

systems, where a global goal is achieved by the coordination of lower-level agents. Compared

with traditional top-down engineering approaches, a global predefined goal emerges from

the simple local interactions of the agents. There is no central designer that distributes tasks

Chapter 1: Introduction

3

among each individual agent. The system is scalable and can adapt and/or recover from

a sudden increase or decrease in the number of agents. Amorphous computing [1], spatial

computing [13], swarm intelligence [15] and cellular automata [110] consist of biologically-

inspired, novel engineering approaches and mathematical models for implementing self-

organizing models. Morphogenesis modeling can be used to assist developmental biology

and tissue engineering [63, 75]. Evolutionary computing [35], based on Darwinian evolution,

has demonstrated novel approaches to solving problems where little is known about the

solution space. Furthermore, algorithms based on morphogenesis and self-organization can

be used in multi-robot control, reconfigurable robots and swarm robotics [79].

The main challenge when designing self-organization algorithms is to convey a global

desired behavior to a large number of lower-level individual primitives. More specifically,

given a task expressed at a global level, how can one design local interaction rules for lower-

level components such that the local interactions among these components lead to the

emergence of the global predefined behavior or structure? Current self-organizing shape

formation algorithms aim to link local interactions at the microscopic level with the global

desired behavior at the macroscopic level [16, 72, 73, 100]. However, existing algorithms

either require some special global initialization of the environment and/or require that

local primitives have a blueprint of the final shape to be formed. Moreover, existing self-

organizing systems, instead of starting with desired global outcomes, begin by experimenting

with different local interaction rules and then inspect the outcomes for desirable results.

There have been difficulties in completely eliminating global information from the lower

level primitives and ‘reverse engineering’ the local interaction rules that lead to specified

outcomes. Truly local algorithms will provide the benefit of scalability and parallelizability

to engineered systems. By eliminating central leaders, we also eliminate central points

Chapter 1: Introduction

4

of failure. This thesis provides the methodology of discovering local interaction rules for

homogeneous autonomous agents that generate predefined, macroscopic shapes.

The first step of the methodology involved is developing a chemotaxis-based cell aggre-

gation system that accurately simulates the behavior of actual, living cells. This simulator,

which was developed by Dr. Manolya McCormick [40], produces cell aggregations of ran-

dom form and structure. The aggregation system was extended to include two types of

cells/agents. These two agents emit different types of chemicals into the environment and

follow the chemical gradients sensed on their surfaces. Given proper parameter values,

these agents self-organize from a random distribution into a central core of one type of

agents surrounded by a layer of the other type of agents. Such sorting is observed during

embryonic tissue formation and the differential clustering of cancer cells with different de-

grees of metastatic potential. We have developed a metric that quantifies the quality of

the sorted structure. We performed numerous simulations with our algorithm in order to

determine which parameters and associated values would produce sorting patterns with a

quality above a certain threshold. We identified ranges for these parameters that guarantee

the quality of the final sorted results.

While our self-sorting system can consistently produce a layered two-cell-type struc-

ture, it is only designed to produce one specific structure. This is achieved by changing

the parameters of a fixed interaction. We aim to generalize this approach to spatial self-

organization in order to robustly produce various user-defined shapes and structures. To

achieve this goal, we propose a new approach to shape formation based on self-organizing

shape primitives [5, 7], interacting via a chemotaxis paradigm.

In this approach, shapes are composed from a collection of lower-level self-organizing

primitives. Macroscopic shapes are formed automatically by the aggregation of these simple

Chapter 1: Introduction

5

primitives. A shape primitive is represented by a small disc existing in a 2D environment.

All shape primitives are initialized within a circle in the center of an arena with a uniform

spatial distribution. Each primitive emits a finite “chemical” field, which accumulates in

the environment. Each primitive detects the cumulative field at the eight receptors on

its surface, and calculates the field gradient from these inputs. The gradient is used to

determine the velocity of the primitive. Primitives move in the direction of the field’s

gradient with a speed proportional to the gradient’s magnitude. A large-scale, user-defined

shape then emerges from the combined actions of the individual primitives. The artificial

chemical fields of individual primitives are explicitly defined as mathematical functions for

each user-specified shape. Given the difficulty of designing the functions directly, genetic

programming is used to evolve the local potential field functions for each shape, producing

an automated shape formation capability.

Several principles are followed when developing the shape primitives. 1) Shape prim-

itives are autonomous ‘agents’. Each primitive is an independent entity that senses the

environment, responds to it, and then modifies the environment and its internal state.

There is no ‘master designer’ directing the actions/motions of the primitives. 2) Actions

are based on local information. Each primitive emits a finite field that can be sensed

only by other primitives within a certain range. The only information received by a shape

primitive is gathered at its surface, namely the concentration of the cumulative field and

contact with immediate neighboring primitives. 3) Shape primitives respond to information

with prescribed behaviors. The actions performed by each primitive are the same, but the

specifics of the individual actions are based on information received from the environment.

4) Shape primitives have no representation of the final, macroscopic shape to be produced.

Primitives do not use information about the final shape to determine what actions to take.

Chapter 1: Introduction

6

Their actions are predetermined by the shape to be produced, but primitives do not carry

or access information about the shape. 5) Primitives do not know their current global

position nor their final position relative to the specified shape. 6) The macroscopic shape

emerges from the aggregation of local interactions and behaviors. Rather than follow a plan

to produce the shape, primitives sense and respond to the cumulative field concentration.

This simple behavior, when combined with somewhat complex individual fields, will direct

the primitives to take individual actions, based on local information, that ultimately direct

them to aggregate into a user-defined, macroscopic shape.

We have evolved local field functions for a number of simple user-defined shapes, for

example an ellipse, a diamond, an hourglass, the letter ‘S’, the letter ‘b’ and a triangle.

Given the exploratory nature of our work, we have experienced failures when trying to make

different target shapes. Moreover, a significant amount of computation is needed for the

genetic process to produce the chemical field function for a particular shape. Additionally,

during the aggregation process, each primitive starts with a random position. Given a

specific field function and different initial conditions, self-organizing shape primitives do

not always aggregate into the desired form. This system does not always consistently and

robustly produce a desired shape. We have observed that there are instances when the

primitives do not spatially self-organize into a unique shape, but instead form two or more

stable final configurations.

In order to eliminate this bifurcation behavior and control the self-organizing shape for-

mation process so that it consistently produces a single, desired shape, we analyze whole

swarm populations at the global level in search of macroscopic, distinguishing attributes.

This analysis identifies features, based on statistical moments of the agents’ positions, that

have significantly different values for different outcomes of a swarm aggregation. We dis-

Chapter 1: Introduction

7

covered that these statistical moments can be used to accurately predict the outcome of

the self-organization process at an early stage of the shape aggregation [9]. Through our

study of the dynamics of a swarm’s statistical moments during the aggregation process, we

have noted the connection between initial conditions and the final shape configuration of

the swarm. We then discovered that biased, random initial conditions which meet specified

constraints, i.e. have well-defined statistical properties, robustly yield simulations with a

unique final outcome. Therefore, we are able to control the spatial self-organization process

by specifying the statistical properties of its initial conditions.

This thesis contains descriptions of two self-organizing systems that we have developed

on the way to the ultimate goal of completely controlling spatial self-organization. Our

first attempt to achieve this goal developed a robust self-sorting system, inspired by cell

sorting. Our second attempt developed morphogenetic primitives, which self-organize into

user-specified macroscopic shapes based on local field functions. To achieve the final goal

of directing spatial self-organization, we first identified macroscopic, distinguishing features

by analyzing whole swarm populations at a global level. We compute the features based

on the positions of the swarm’s agents and accurately predict the final outcome of its

aggregation [9]. Finally, we use these features (statistical moments of the positions) as

constraints to create biased, random initial conditions, which leads to an approach for

robustly directing spatial self-organization.

The contributions of our work will extend several fields and are the following:

• Self-sorting of heterotypic agents. We developed a self-organizing algorithm that

guarantees agent sorting. Modeling and studying cell sorting is important to devel-

opmental biology and cancer research. It also provides paradigms for biology-based

algorithms of self-organization behavior.

Chapter 1: Introduction

8

• Morphogenetic primitives. Rather than utilizing traditional shape modeling methods

(e.g. parametric shape modeling, spring-mass deformable models, solid shape model-

ing), we developed an ‘organic’ method for modeling predefined macroscopic shapes

with self-organizing primitives. This approach can be extended for and applied to the

control of robotic swarms, motion specification of animated crowds and generative

model creation.

• Investigation of statistical moments. We studied properties of the positions of all

primitives as a whole. From this we discovered macroscopic, distinguishing features

that may be used to characterize different final swarm configurations. Furthermore,

from these features we are be able to confidently predict the final outcome of the

system at an early stage during the shape formation process.

• Directing self-organizing shape formation with biased initial conditions. The results

of the previous work lead to a control methodology that can be applied to self-

organization of multi-agent shape formation, swarm robotics and sensor networks.

• Overall, this thesis describes a methodology for programming self-organizing primi-

tives that robustly form into user-defined macroscopic shapes.

Chapter 1: Introduction

9

Chapter 2: Self-Sorting Primitives

2.1 Introduction

Our first effort to develop a robust self-organizing system produced a cell sorting simulation.

The cell sorting simulation is based on a previously developed chemotaxis-based cell aggre-

gation model (Figure 2.1), that successfully captures the cell behaviors that play important

roles in 2D cell aggregation [40]. Figure 2.2 presents a comparison between an in vitro cell

aggregation experiment and in silico aggregation results produced by out system. It can be

seen that the cell aggregation model generates accurate but random cell aggregates similar

to those produced by actual living cells.

Figure 2.1: Chemotaxis-based cell aggregation simulation.

In the cell aggregation model, a cell’s life cycle and behaviors are implemented as set

of actions that are performed during each time step of a simulation. A single aggregation

10

Experimental Data Simulation Results

Figure 2.2: Comparison of live and simulated data. (left) Microscope image from in
vitro experiment. (right) Visualization of simulated aggregation.

simulation is comprised of a series of these time steps. A cell’s actions for each one of

these time steps are outlined in Figure 2.3 and Table 2.1. Newly divided cells remain in a

quiescent state for a user-defined period. These cells are not Active and cannot divide until

they once again become Active. Immediately after cell division one of the new daughter

cells separates from its sister cell. It moves with a user-defined velocity along the division

axis for a user-defined period of time. Upon completion of this separation period the cell

begins to emit a chemoattractant chemical and to respond to the chemoattractant gradient

in its local environment. During the Quiescent phase there is some randomness in the cell’s

movement. These random motions vanish as the cell becomes Active. Based on the chemical

fields produced by nearby cells a gradient is calculated and the cell/ aggregate moves in

the gradient direction in response to it. A cell is capable of attaching to other cells upon

collision. A cell’s age is incremented at each time step. If the cell is apoptotic, a check is

then performed to determine if the cell should die. If the state of the complete environment

is to be saved for visualization purposes, the cell emits and stores its chemical field in the

chemoattractant array. If in the Active stage, the cell determines if it is time to divide. If it

Chapter 2: Self-Sorting Primitives 2.1 Introduction

11

Figure 2.3: Computational flow of cell aggregation simulation per time step per cell.

Table 2.1: Actions taken by a virtual cell.

Function Description

Emit() Emit chemoattractants from surface

Sense(Coord x,Coord y) Sense chemoattractant concentration at surface sensors

CalculateGradient() Calculate the chemical gradient
using the values read at 8 surface receptors

FollowGradient() Move in the direction of the chemoattractant gradient

RandomMotion() Take a random number of steps in a randomly chosen direction

Attach(Cell c1,Cell c2) Attach to another cell after a collision

Proliferate(Cell c) Divide and create two new cells

Age Increment internal clock

Die(Cell c) Shut down receptors and stop contributing/responding.

divides, its and its daughter cell’s ages are set to zero, and they enter the Quiescent stage.

We extended the cell aggregation simulation system to include a chemotaxis-based het-

erotypic cell sorting model. In this model, two types of agents (T1 and T2) are first randomly

placed in a toroidal environment. Agents emit different types of chemicals into the envi-

ronment and follow the chemical gradients sensed on their surfaces. Given the proper

parameters, these agents self-organize from a random distribution, in Figure 2.4 (left), into

a central core of T1 (blue) agents surrounded by a layer of T2 (red) agents, as in Figure 2.4

(right). We aimed to analyze and identify important parameters in the cell sorting process

Chapter 2: Self-Sorting Primitives 2.1 Introduction

12

Figure 2.4: Initial and ending configurations of a self-organizing two-agent-type sys-
tem (blue T1 agents and red T2 agents). The quality value of the initial state is 0.52
and final structure is 1.60.

that robustly produce the desired sorted structure.

The dynamic sorting of heterotypic populations, which results in the enclosure of one

cell grouping by another, leads to the organization of tissues during morphogenetic pro-

cesses such as embryogenesis, organogenesis and tumorigenesis [49]. For example, such

sorting/organization is observed during the differential clustering of cancer cells with vary-

ing degrees of metastatic potential. Beyond making contributions to developmental biology,

cancer research and biomedical engineering, the simulation of cell sorting can also provide

paradigms that may be used to design biology-based algorithms for self-organizing behavior,

such as directing the movements of a robot swarm. It could be used in a multi-robot rescue

or surveillance system, where one group of robots needs to surround another group of robots.

Additionally the algorithm could be employed to direct a sensor network to autonomously

configure itself into a specific spatial pattern. In the future, the agent-sorting algorithm

could be utilized to form a 3D wire-like structure with reconfigurable microbots, by noting

that the 2D sorted structure resembles the cross-section of a wire. Having microbots sort

Chapter 2: Self-Sorting Primitives 2.1 Introduction

13

themselves perpendicular to and along a path-line would produce a structure with a central

filament surrounded by a casing.

2.2 Related Work

A number of computational models for simulating biological cell sorting in 2D or 3D have

been developed. A majority of the research uses the Cellular Potts Model (CPM), a lattice-

based model based on the large-Q Potts model, to investigate biological cell sorting in

both 2D [51] and 3D [71, 50]. These models assume that differential adhesion, i.e. the

Differential Adhesion Hypothesis (DAH) [93], is the main cause of sorting in heterogeneous

cell mixtures. The CPM model has a global energy function, based on contact energies

between different cell types and the extra-cellular matrix, that when minimized can sort

two kinds of cells. In similar work, Hogeweg [54, 55] studied the relationship between cell

differentiation and cell adhesion, and its affect on modes of morphogenesis within a cellular

automata framework. More recently cell sorting models based on self-propelled particles

[25, 102] have been developed. These models have been used to study the influence of

intrinsic cell motility [14] and the relationship between intercellular adhesion and surface

tension [103].

Based on DAH and control theory, Kumar et al. used an artificial differential potential

to direct the segregation of heterogeneous agents into two separated groups [64]. Agents

move towards other agents of the same type and away from agents of a different type.

Other research in multi-robot formation control or pattern generation usually involves a

lead-following approach [26], a global potential field [57] or requires a GPS system [11].

Computational biology models have also been used for self-organizing geometry and

evolutionary computing. Fleischer explored a cell-based developmental model for self-

organizing geometric structures [44, 45]. Eggenberger-Hotz [33, 56] proposed the use of

Chapter 2: Self-Sorting Primitives 2.2 Related Work

14

genetic regulatory networks coupled with developmental processes for use in artificial evo-

lution and was able to evolve simple shapes. The combination of artificial evolutionary

techniques and developmental processes provides a comprehensive framework for the anal-

ysis of evolutionary shape creation. Nagpal et al. [72, 73] present techniques to achieve

programmable self-assembly. Cells are identically-programmed units which are randomly

distributed and communicate with each other within a local area. In this approach, global-

to-local compilation is used to generate the program executed by each cell, which has

specialized initial parameters. This work has been extended and applied to collective con-

struction based on a swarm of autonomous robots and extended stigmergy [108]. Work has

recently begun on bio-inspired self-organizing heterogeneous systems. Doursat [28] utilizes

artificial system growth inspired by embryogenesis as a model for evolutionary design. Beal

[12] presents the concept of Functional Blueprints, an engineering approach for specifying

the desired performance of and the means of incrementally correcting deficiencies in grown

systems.

A computational model of chemotaxis-based cell aggregation [38, 40] provided a frame-

work, paradigm and interaction constructs for designing the correct set of operations and

parameter values that produce the desired sorted result in our research. In this model, a

virtual cell is designed as an independent, discrete unit with a set of physiologically relevant

parameters and actions. Each cell is defined by its size, location, rates of chemoattractant

emission and response, age, life cycle stage, quiescent period, proliferation rate and number

of attached cells. All cells are capable of emitting and sensing chemoattractant chemicals,

moving, attaching to other cells, dividing, aging and dying.

Our agent sorting algorithm stands apart from previous work in many ways. While

Nagpal et al.’s [72, 73] work is bio-inspired, it focuses on agents that fold and grow into

Chapter 2: Self-Sorting Primitives 2.2 Related Work

15

specific shapes and require specialized markers in the environment. Werfel and Nagpal’s

extended stigmergy approach [108] utilizes homotypic agents that access a global coordi-

nate system, as well as a shared shape description, to produce objects with a pre-defined

configuration. Other robotic swarm techniques [11, 26, 57] utilize global or centralized

information, again with homotypic agents. Our work focuses on sorting a population of

heterotypic agents [8]. The Kumar et al. technique [64] is able to de-mix a two-type group

of agents into two separate amorphous clumps. This work does not address the problem

of directing a heterotypic swarm into a specific tightly-packed, sorted formation. The work

on more complex systems that form into shapes [12, 28, 33, 44, 45, 56] employs multiple

mechanisms of morphogenesis, most importantly proliferation and differentiation, i.e. the

agents in these systems reproduce and change type. These two features preclude these kinds

of algorithms for use in our target application, robot swarm formation, since robots cannot

reproduce. The desire to keep the actions of the individual robots as simple as possible also

rules out differentiation as an agent attribute.

In comparison to previous work, our approach is unique in that it creates a tightly-

packed sorted structure from an initially mixed population. It is able to achieve this goal

purely through local interactions and simple behaviors. All agents of the same type are

homogeneous. There is no leader agent, and all agents of the same type are treated equally

during the computation. The agents in our algorithm do not know their position in the

world, nor do they have a representation of the final macroscopic shape. No global infor-

mation or environmental markers are required to produce the desired result. Our algorithm

is an extension of a chemotaxis-based cell aggregation model; we employ chemotaxis as a

paradigm for controlling heterotypic agents. Agents simply emit chemicals into their envi-

ronment, follow the cumulative chemical gradients that they sense at their surfaces, attach,

Chapter 2: Self-Sorting Primitives 2.2 Related Work

16

detach, and self-organize into a sorted, layered structure.

2.3 Chemotaxis-Based Agent Sorting Model

We have chosen to focus on chemotaxis, cell motility and DAH [93] as the main mechanisms

to include in an algorithm that produces sorting behavior in self-organizing heterotypic

agents. In our scenario, there are 200 T1 (blue) agents and 200 (red) T2 agents in a toroidal

environment, i.e. the top edge of the computational arena is connected with the bottom

edge and the right edge is connected to the left edge, which is 500 × 500 units in size. To

be consistent with cell dimensions, 1 unit is equivalent to 1 µm. All agents are the same

size (radius = 6 units, a size consistent with many cells [2]).

Both T1 and T2 agents age (i.e. maintain an internal clock) during the simulation,

and their total numbers stay fixed. T1 agents emit two chemicals (C1 and C2) into the

environment, but only respond to chemical C1. T2 agents do not emit any chemicals, and

only respond to chemical C2. Collisions between agents may form an attachment, and once

the attachment is formed, all agents in the aggregate move with the same velocity.

A single simulation is comprised of a series of time steps, with each step equaling 60

seconds, and runs for a simulated 90 hour period. Important parameters in the model are λi

(magnitude of response to chemoattractant i), PR (probability of responding to a chemoat-

tractant), TS (time between a T1 agent’s first attachment and production of chemoattractant

C2), PAttach (probability of attachment) and PDetach (probability of detachment).

Our agent-sorting algorithm has been implemented by modifying a previously devel-

oped chemotaxis-based cell aggregation simulation system [38, 40]. The work here extends

the system by defining multiple cell types with more complex behaviors. In the system,

chemoattractants are secreted from the agent’s surface symmetrically and diffuse radially.

The concentration of the chemoattractant initially secreted by a single agent at its surface

Chapter 2: Self-Sorting Primitives 2.2 Chemotaxis-based Agent Sorting

17

is N0 molecules/units
2 (N0 = 270 for both chemoattractants, i.e. C1 and C2, in our ex-

periments [80]). We assume that a constant chemical concentration is maintained at the

agent’s surface, creating a static, circular chemical concentration field around each agent.

Given this assumption, the chemoattractant concentration Ci within the field drops off as

1/r, where r is the distance from the agent surface [23]:

Ci(r) =
N0

1 + r
, i = 1, 2. (2.1)

It is known that once the chemoattractant concentration falls below a certain value, cells

will no longer respond to the chemoattractant [86]. This phenomenon allows us to define

a finite field around an agent with a radius of RMax (300 units for our simulations). Any

agent within a distance less thanRMax to another agent is influenced by the chemoattractant

emitted by the other agent. An agent that is further away than RMax from an emitting

agent does not detect its chemoattractant and the detecting agent’s motion is not affected

by the emitting agent.

2.3.1 Chemotaxis

Chemoattractant C1 is produced by all T1 agents at all times. A T1 agent’s production of

chemoattractant C2 begins after a certain amount of time (TS , 18 hours in our simulations)

after it has attached to another agent. C2 emission from T1 agents then steadily increases

until it reaches a maximum rate (C0) at 24 hours. T1 agents are attracted to chemical

C1 and T2 agents are attracted to chemical C2. In this sequence of events, T1 agents

first attract each other by emitting and responding to chemoattractant C1. This allows

them to come together to form a single “blue” aggregate of T1 agents. As they begin to

attach to each other, T1 agents then begin to emit chemoattractant C2 (18 hours after their

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

18

r2

r3r4

r6

r5

r8r7

RMax

rc

r1

Figure 2.5: A single agent has radius rc and eight chemoattractant receptors identified
as ri. The agent’s chemical field cannot be sensed past RMax.

first attachment); thus then attracting T2 agents, which form around and attach to the T1

aggregate, as seen in Figure 2.9.

Agents emit ‘chemicals’ into the environment. The ‘chemicals’ conceptually diffuse out

from the agent’s surface into the surrounding environment within a certain distance of

influence in all directions in 2D. In our system the field function is truncated at a fixed

distance (Rmax = 200 units) in order to keep the agent interaction finite and local.

Each agent has eight receptors evenly distributed on its surface. The placement of the

receptors, within the agent’s local coordinate system, begins at 45◦ in the upper right and

proceeds clockwise. The overall chemical gradient sensed by an agent is calculated with the

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

19

following equations,

Cx =
Λ2 − Λ6 + Λ1−Λ5−Λ7+Λ3√

2

2 ∗ rc

Cy =
Λ8 − Λ4 + Λ7+Λ1−Λ5−Λ3√

2

2 ∗ rc

∇C = (Cx, Cy) (2.2)

where Λi is the chemical concentration sensed at receptor ri and rc is the agent’s radius (5

units for our examples). The locations of the numbered receptors are provided in Figure

2.5.

Using a biology-based assumption that cells quickly reach a terminal velocity because of

the viscous drag imposed by their environment, the velocity of a chemotactically stimulated

agent is directly proportional to the chemical gradient of the cumulative chemical field

(∇Ccum
i) detected at the agent’s surface. The chemical concentration of the cumulative

field at any point in space X is simply the sum of the individual chemical fields emitted by

the agents that are within a distance RMax of X. An agent’s velocity Vi is calculated as

Vi = λi ∗ ∇Ccum
i . (2.3)

The velocity Vi of an individual agent is clamped to 1 unit/minute, a maximum velocity

consistent with a typical chemotactic cell response if the units are considered to be mi-

crons [41]. The magnitude of an agent’s response to a chemoattractant is defined with

parameters λ1 (in response to C1) for T1 agents and λ2 (in response to C2) for T2 agents. A

stronger response, i.e. a greater value of λi, makes agents move faster and leads to shorter

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

20

aggregation times. When the chemotactic interaction between agents is weaker (i.e. for low

values of λi), slower aggregation behavior is observed. Given the velocity calculated by

Equation 2.3, at each time step ∆t of a simulation a displacement ∆xi is calculated for

each type of agent i,

∆xi = Vi ∗∆t. (2.4)

Different response rates (λ1 and λ2) are assigned to each type of agent for each chemoat-

tractant. The difference in the response rates of T1 and T2 agents to C1 and C2, as described

in [76], is an important feature of our agent-sorting algorithm. We defined λ1 to be larger

for T1 agents (10.0) than λ2 for T2 agents (1.0) to induce T1 agents to aggregate faster and

form the core of the aggregate. λ2 for T1 agents is 0 and λ1 for T2 agents is 0, so these

agents do not respond to these chemoattractants.

At each time step we probabilistically determine if the agent should respond to the

gradient, based on probability PR. If it is determined that agents should not respond to a

gradient, or if no chemical gradient is present, the agent takes a random step of 1 to 6 units.

This feature implements a type of biased random walk that is influenced by the strength of

the agents’ chemotactic response [58]. For T1 agents, this probability is constant at 50%.

We found through experimentation that PR for T2 agents needed to be a function of the

chemoattractant concentration sensed at the agent’s surface in order to consistently produce

the desired final result. As the concentration of C2 increases, so does the probability that

a T2 agent will move in the direction of C2’s gradient. We use the function

F (Cavg
2) =

1

2
− 1

2
∗ cos(π ∗min(Cavg

2 , Cmax)/Cmax), (2.5)

to define PR for T2 agents, where Cmax is 270 molecules/units2 in our simulations. Cavg
2

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

21

is the average C2 concentration sensed at the eight receptors on a T2 agent’s surface. The

equation produces a smoothly increasing, then clamped, probability using a cosine function

that begins at zero and increases to 1 at Cmax, and remains 1 above this concentration

value, as in Figure 2.6.

0 50 100 150 200 250 300 350
C_avg

0.0

0.2

0.4

0.6

0.8

1.0

F(
C

_a
v
g
)

Figure 2.6: Probability of T2 agents responding to a chemoattractant.

Agents may attach to each other and form aggregates of increasing size. Once an

aggregate is formed, all of the agents within the aggregate move with the same velocity

Vaggr, as defined by

Vaggr = Vavg/M, (2.6)

where Vavg is the average of the velocities calculated for each agent in the aggregate as if

it were unattached, and M is the mass of the aggregate, i.e. the number of agents in the

aggregate.

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

22

2.3.2 Attachments and Detachments

We assume that, similar to newly formed cells [2], agents are initially quiescent and are

unable to form attachments. Specifically, our agents do not form any attachments for the

first 5 simulation hours. Additionally, we assume that agents do not form attachments

unless they are in contact with at least four other agents. Otherwise their own kinetic

energy is able to overcome the adhesion of just a few agents.

T1 agents probabilistically start forming aggregates upon collision after 5 hours and this

triggers the production process for another binding chemical. Five hours after a T1 agent

forms an attachment with another T1 agent, it can start attaching to T2 agents. These

T1-T2 attachments trigger T2 agents to also produce a binding chemical and in another 5

hours they are able to attach to other agents as well.

If an agent is capable of attaching to another agent (i.e. it is older than 5 hours and has

the appropriate type and number of neighboring agents, 4 or more), it makes the attachment

upon collision with probability PAttach. This probability is a function of the type of agents

involved in the collision; thus implementing a form of differential adhesion.

PAttach =



100% if both are T1

50% if one is T1 and one is T2

10% if both are T2

(2.7)

T1 agents have a greater chance of forming attachments and therefore create bigger aggre-

gates than T2 agents. T1 agents always attach with each other. T1-T2 attachments only are

formed during half of the T1-T2 collisions. T2 agents only attach with each other 1 out of 10

collisions. This behavior creates bigger and growing aggregates of T1 surrounded by mostly

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

23

single agents of type T2.

There is some probability that the outer layer agents of an aggregate can detach from the

aggregate. We model this behavior in our simulation system with a probability of detach-

ment, PDetach. Agents with 3 or fewer neighbors are not considered fully surrounded and

have a 30% probability of detaching from their neighbors. When an agent detaches it takes

a random step of 1 to 6 units away from the aggregate to which it was previously attached.

In the next time step the detached agent detects and responds to the chemoattractant gra-

dients. Since the length of the random step is at most 1 agent radius, the separated agent

usually returns and attaches to the same aggregate within a short amount of time. Since

the agent follows the gradient after separation, detachments give the agent the ability to

slide over their neighbors and attach to a different location on the aggregate. Detached

agents will move in a direction towards a greater concentration of agents. We observed that

including agent detachments in the algorithm led to more circular final aggregates.

2.3.3 Agent Actions

The actions, and their order, taken by each agent at each time step of a sorting simulation

are detailed in Figures 2.7 and 2.8.

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

24

Produce C
1

Time
Attach

>T
S
?

Produce C
2

Calculate
Gradient C

1

Calculate
Displacement

D

Take random
step (P

R1
)?

Take random
step 1-6 µ

Take step
D

Collision? Age>5hr?
Surrounded by

at least 4
T1 cells?

All new neighbors
attach (PAttach)

Age

TimeAttach>5hr?

Surrounded by
at least 4 T1
or T2 cells?

Number of
attachments<4?

Detach
(PDetach)

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N N

N

N

Start

|Gradient C
1
|=0?

Y

N

Figure 2.7: Computational flow chart for a T1 agent during one time step of the agent sorting algorithm.

C
h
a
p
t
e
r
2
:

S
e
l
f
-S
o
r
t
in
g

P
r
im

it
iv
e
s

2
.3

C
h
e
m
o
t
a
x
is-b

a
se

d
A
g
e
n
t
S
o
r
t
in
g

25

Calculate
Gradient C

2

Calculate
Displacement

D

Take random
step (P

R2
)?

Take random
step 1-6 µ

Take step
D

Collision?
Number of

attachments>0?

All new neighbors
attach (PAttach)

Age

TimeAttach>5hr?

Surrounded by
at least 4 T1
or T2 cells?

Number of
attachments<4?

Detach
(PDetach)

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

Start

|Gradient C
2
|=0?

Y

N

Figure 2.8: Computational flow chart for a T2 agent during one time step of the agent sorting algorithm.

C
h
a
p
t
e
r
2
:

S
e
l
f
-S
o
r
t
in
g

P
r
im

it
iv
e
s

2
.3

C
h
e
m
o
t
a
x
is-b

a
se

d
A
g
e
n
t
S
o
r
t
in
g

26

T1 Agent

At the beginning of a simulation time step, a T1 agent emits chemical C1 into its environ-

ment. If the T1 agent is attached to another agent and if the time since that attachment

occurred is later than TS (18 hrs), the agent also emits chemical C2 into the environment.

The chemical C1 is sensed at a T1 agent’s surface and a concentration gradient is calculated.

If no chemical gradient is sensed at its surface, the agent takes a random step. If a gradient

is sensed, with the probability PR (50%) the agent moves in the direction of the gradient

with a velocity proportional to λ1 (10.0) based on Equations 2.3 and 2.4, otherwise it takes

a random step of 1 to 6 units.

If no collision occurs, the agent increments its age and goes to the detachment stage. If

a collision has been detected and the T1 agent’s age is less than 5 hours, the agent does not

form an attachment and goes to the age increment stage. Otherwise the time since the first

attachment is checked. If this time is less than 5 hours the agent will form attachments

only if it is surrounded by 4 or more T1 agents, i.e. it only forms attachments with other

T1 agents. PAttach is 100% for T1-T1 attachments. If the time since its first attachment is

greater than 5 hours the T1 agent will attach to both T1 and T2 agents, if it is surrounded

by 4 or more of them. PAttach is 50% for T1-T2 attachments.

Once the attachment stage is complete, the agent increments its age. If the agent has

less than four attachments, with a 30% probability the agent will detach from its neighbors.

Note that an agent may become attached to another agent via the other agent’s attachment

process, and therefore may have fewer than four attachments.

Chapter 2: Self-Sorting Primitives 2.3 Chemotaxis-based Agent Sorting

27

T2 Agent

At the beginning of a simulation time step, a T2 agent senses chemical C2 at its surface

and calculates the chemical’s gradient. If no chemical gradient is present, the agent takes

a random step. The gradient is scaled by λ2 (1.0) and a displacement is calculated using

Equations 2.3 and 2.4. With probability PR the T2 agent moves in the direction of the

gradient of C2, otherwise it takes a random step of 1 to 6 µms. PR is an increasing function

of the C2 concentration sensed on the agent’s surface, defined by Equation 2.5.

If no collision occurs, the agent increments its age and goes to the detachment stage.

If a collision has been detected, but the T2 agent is unattached, the agent goes to the age

increment stage. In other words a T2 agent does not attach itself to another agent until

another agent attaches to it first. If it is attached, the time since the first attachment is

checked. If this time is greater than 5 hours the agent will form attachments only if it

is surrounded by 4 or more agents. Attachments are formed with T2 agents with a 10%

probability, and with T1 agents with a 50% probability. Once the attachment stage is

complete, the agent increments its age. If the agent has less than 4 attachments, with a

30% probability the agent will detach from its neighbors.

2.4 Results

We performed numerous simulations with our algorithm in order to determine which of its

parameters and associated values would produce the sorting patterns presented in [47, 94].

We concluded that λi (magnitude of response to chemoattractant i), PR (probability of

responding to a chemoattractant), TS (time between a T1 agent’s first attachment and

production of chemoattractant C2), PAttach (probability of attachment) and PDetach (prob-

ability of detachment) have the greatest impact on agent sorting outcomes. The parameter

Chapter 2: Self-Sorting Primitives 2.4 Results

28

Figure 2.9: Simulation of self-organizing heterotypic agents sorted into a layered
structure. T1 (blue) agents emit a chemical that attracts other T1 agents, forming a
central blue core. Then they emit a second chemical that attracts T2 (red) agents,
forming the outer layer.

Chapter 2: Self-Sorting Primitives 2.4 Results

29

Table 2.2: Parameter values that produce sorted structure with the highest quality
value.

Type λ1 λ2 PR PDetach TS RMax

T1 10.0 0.0 0.5 0.3 18 hrs 300

T2 0.0 1.0 F (C2) 0.3 - 300

values that produce the desired result pictured in Figures 2.4 and 2.9 are listed in Ta-

ble 2.2 and Equation 2.7. These values show that T1 (blue) agents strongly respond to

C1 (λ1 = 10), but do not respond at all to C2 (λ2 = 0). T2 agents respond weakly to C2

(λ2 = 1.0), and do not respond to C1 (λ1 = 0). Since PR is the probability that agents

will respond to a chemoattractant, it can be seen that T1 agent’s response to C1 remains

constant at 50%. A T2 agent’s response to C2 is an increasing function (Equation 2.5) of

the C2 concentration sensed at the agent’s surface. 18 hours is the time needed between

a T1 agent’s first attachment and production of chemoattractant C2 (TS) for the desired

sorting to occur.

As seen in Figure 2.9, the two agent populations are initially mixed. Since the blue T1

agents strongly and always attract each other, they quickly form small aggregates, which

then ultimately come together to form a single blue grouping. Red T2 agents initially move

randomly in the environment before the production of C2 begins. After TS and the start

of C2 production, T2 agents become more strongly attracted to T1 agents. T2 agents then

close in to form a tightly packed layer around the T1 agents. Note that the agents move

on a hexagonal grid [38] with a 1 unit distance between each grid location. This low-

level constraint influences the aggregate’s resulting large-scale outer shape. The low-level

structure of the hexagonal grid can be seen in the overall shape of the final sorted aggregate.

All of our sorting simulations required approximately 15 CPU-minutes of computation

Chapter 2: Self-Sorting Primitives 2.4 Results

30

time on an Apple MacBook with an Intel dual core 2.0 GHz processor and 1GB of RAM.

2.5 Parametric Studies

We categorize the parameters in our system into agent and environment parameters. Agent

parameters include λi, PAttach, PDetach, TS , PR and RMax, and are associated with each

individual agent. Environment parameters include agent number, environment size, noise

and initial conditions. Once the desired sorting result was produced, a series of parametric

studies were performed to explore the influence of these parameters on the shape and

structure of the final aggregates.

2.5.1 Sorting Quality Evaluation

In order to quantitatively evaluate the quality of the emergent layered sorted structure, we

have defined an evaluation measure based on the distribution of the two types of agents in

the final aggregate. This measure produces a scalar that is able to quantify the quality of

the sorted structure and allows us to compare and rank different results.

Since the desired structure is a round disk with T1 (blue) agents in the center and T2 (red)

agents surrounding the center, we have devised an evaluation measure that is maximized

when the sorting process produces the sought after result. The evaluation measure is based

on the location of the red and blue pixels in the final image of the aggregate. The first step

in its computation involves calculating the centroid of the blue pixels, Center. The average

distance between the centroid and the blue pixels, then the red pixels is calculated,

Rblue
avg =

1

n

∑
pixelbluei ∈T1

Dist(pixelbluei , Center) (2.8)

Rred
avg =

1

m

∑
pixelredi ∈T2

Dist(pixelredi , Center), (2.9)

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

31

where n is the number of blue pixels and m is the number of red pixels, and Dist() is the

Euclidean distance between a pixel and the centroid of the blue pixels. Given these values

we calculate the standard deviation of the distances between the individual blue and red

pixels to the centroid,

σblue =

√√√√ 1

n

∑
pixelbluei ∈T1

(Rblue
i −Rblue

avg)2 (2.10)

σred =

√√√√ 1

m

∑
pixelredi ∈T2

(Rred
i −Rred

avg)2, (2.11)

where R∗i is the distance between pixel i and Center. Finally, given the standard deviations

a quality measure is defined that has a maximum value when the desired sorted structure

is generated,

quality = 100/(σblue + σred). (2.12)

We should note that since the sorting is computed in a toroidal environment, an aggre-

gate must first be centered in its image [3] (See Appendix A for the details of the centering

algorithm.) before the quality measure is computed. What we deemed as acceptable sorted

results can be seen in Figures 2.4 (right) (quality = 1.60), 2.9 (bottom-right) (quality =

1.55), 2.12 (right) (quality = 1.42) and 2.14 (right) (quality = 1.41). These results were

considered “acceptable” via visual inspection, because it could be seen that well over 95%

of the agents were divided into two contiguous groups. Note that all of these results have

a quality value above 1.4. Based on this observation we empirically define 1.4 as the lower

threshold value of the sorting quality metric for acceptable sorting results.

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

32

2.5.2 Agent Parameters

In order to explore the influence of the agent parameters, we initialize the agents with

the optimal parameter values listed in Table 2.2, and then modify the value of a single

parameter to demonstrate its effect on the sorting behavior.

(a) quality=0.76 (b) quality = 1.08

Figure 2.10: Effect of chemoattractant gradient response λ1 and TS on sorting. (a)
λ1 = 1.0; (b) TS = 6 hours.

λi

Figure 2.10(a) presents the effect of chemoattractant gradient response parameter λ1 on

the sorting results. The figure shows disrupted aggregation when the response of T1 agents

to the C1 chemoattractant chemical is reduced. Slower blue T1 agents cannot form into a

single well-sorted aggregate, before being engulfed by the red T2 agents. Increasing λ1 does

not affect the sorting outcome, it just makes the blue agents form a single aggregate more

quickly. There is a relationship between λ1 and TS . λ1 determines how quickly blue agents

form a single aggregate. They must form this aggregate before the red T2 agents begin to

move towards blue agents, an action whose timing is determined by TS . Changing λ2 does

not significantly affect the sorting result. As long as the blue agents have enough time to

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

33

form the central core, the speed of the red agents simply determines the time at which the

final sorted configuration is achieved.

TS

TS is the elapsed time between when a blue T1 agent makes its first attachment and when

it begins C2 production. TS hours after blue agents begin to attach to each other, red T2

agents, in response to increasing levels of C2, begin to move towards blue agents, causing

the red agents to enclose the blue aggregate(s). After several simulations we observed that

TS = 18 hours gives the best results. Figure 2.10(b) presents the result when this time is

reduced to 6 hours. A premature aggregation of red T2 agents prevents the blue agents

from forming a single, symmetric core. Increasing TS beyond 18 hours does not change the

final desired sorted aggregate, it just lengthens the time to produce this result.

PAttach

The probability of attachment PAttach is a function of the types of agents that come into

contact, as seen in Equation 2.7. In order to explore the role of attachment probability

during agent sorting, simulations were performed where the probability of blue-blue (B-B),

blue-red (B-R) and red-red (R-R) attachments were given all combinations of 10%, 50%

and 100%, producing 27 agent sorting results. Most combinations of these probabilities

produced some reasonable form of agent sorting. Interestingly, setting the probability of

R-R attachments to 100% usually disrupted the desired agent sorting configuration, as seen

in Figure 2.11. With attachment probabilities of B-B = 50%, B-R = 100%, R-R = 100%

the sorting algorithm produced two approximately sorted structures, as in Figure 2.11(a).

Attachment probabilities of B-B = 50%, B-R = 50%, R-R = 100% further disrupt the

agent sorting process, producing a singly connected, somewhat chaotic strand in Figure

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

34

(a) quality=0.56 (b) quality=0.59

(c) quality=0.68 (d) quality=0.61

Figure 2.11: Effect of PAttach on sorting, (PAttach(blue − blue), PAttach(blue − red),
PAttach(red − red)). (a) (50%, 100%, 100%); (b) (50%, 50%, 100%); (c) (100%, 10%,
100%); (d) (100%, 100%, 100%).

(a) quality=1.12 (b) quality=1.42

Figure 2.12: Effect of PDetach on sorting. (a) PDetach = 0; (b) PDetach = 0.1.

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

35

(a) quality=0.58 (b) quality=1.09

(c) quality=0.56 (d) quality=0.63

Figure 2.13: Effect of changing PR for T1 agents (blue). (a) PR = 10%; (b) PR = 20%;
(c) PR = 80%; (d) PR = 100%.

2.11(b). Attachment probabilities of B-B = 100%, B-R = 10%, R-R = 100% produces

another slightly-ordered strand-like structure in Figure 2.11(c). When all collision events

produce attachments between agents (B-B = 100%, B-R = 100%, R-R = 100%) an even

more uniform strand is produced, as in Figure 2.11(d). Note that since the simulations

are performed in a toroidal environment the left edges of these images are connected to

the right edges. All of these examples highlight the importance of weak R-R attachments

when producing the desired sorted result. If red T2 agents strongly attach to each other

they prematurely form red aggregates that interfere with the aggregation of the blue T1

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

36

(a) quality=1.03 (b) quality=0.46

(c) quality=0.96 (d) quality=1.41

Figure 2.14: Effect of constant PR for T2 agents (red). (a) PR = 10%; (b) PR = 30%;
(c) PR = 50%; (d) PR = 75%.

agents. The blue agents need to aggregate freely with each other. The red agents need to

stay unattached until they engulf the solid blue core later in the simulation.

PDetach

Defining PAttach by Equation 2.7 and setting PDetach to 0, i.e. once an attachment is made

it is never broken, produces a less desirable sorted result. In the scenario of Figure 2.12(a),

the permanent attachments formed during random collisions trap red T2 agents inside the

blue core, and also prevent the agents from collapsing into a single mass; thus producing

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

37

interior holes. Allowing some detachments, as Figure 2.12(b), where PDetach = 0.1, does

improve the result, but still produces some holes and trapped red agents.

PR

The probability that an agent will follow the gradient of a chemoattractant chemical is

defined as PR. If the probability of gradient following is too low no aggregation is observed,

as seen in Figure 2.13(a). As the probability increases blue T1 agents start forming a single

aggregate. A tightly coupled aggregate is formed when PR is 20%, as in Figure 2.13(b). It

can also be seen in this figure that some blue agents never connect to the main blue aggregate

because of their diminished response. The desirable aggregate shape is produced when this

probability is between 40% and 70%. Our experiments showed that an increase in T1’s PR

from 0.7 to 0.8 significantly changes the agent sorting behavior. Once this parameter is

over 0.7, T1 agents do not come together into a well-formed single symmetric structure. For

PR equal to 80%, as in Figure 2.13(c), two separate blue aggregates are formed. When PR

is set to 1, i.e. there is no randomness in the chemotactic response, T1 agents clump into a

somewhat chaotic elongated structure, as seen in Figure 2.13(d). This highlights the need

for noise and randomness in the sorting process in order to ultimately achieve an ordered

final structure. If there is no noise in the movement of the agents, the randomness of the

initial conditions is incorporated into the final sorting result. Once again recall that our

simulations are conducted in a toroidal environment, so that the top of this long structure

connects to the bottom.

The effect of a constant PR value for T2 agents was also studied, instead of using a

gradually increasing function based on the local chemical concentration, as in Equation 2.5.

Figure 2.14 shows the effects of varying the T2 agents’ constant PR value on the structure of

the final sorted agents. Setting PR = 10% produces a result where red agents form a loosely

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

38

packed cloud around the blue agents. See Figure 2.14(a). Once this parameter is over 10%,

T2 agents aggregate more strongly and begin to surround the blue T1 agents. At PR equal

to 30% the T2 agents’ behavior interferes with the aggregation of the T1 agents, and the

T1 agents remain in separate groups, rather than aggregating into a single large structure.

Since the response stays constant (and relatively weak) throughout the simulation these

smaller aggregates stay isolated from each other rather than forming one single aggregate.

See Figure 2.14(b). Strengthening the T2 agents’ aggregation (PR = 50%), as in Figure

2.14(c), brings the separate groups into a single, mixed aggregate. Further increasing PR

for T2 agents to 75% and higher, as in Figure 2.14(d), brings more order to the aggregation

and produces a barely acceptable sorted result.

RMax

RMax defines the radius of the chemical field emitted by one agent that can be sensed by

other agents. In other words, if two agents are within the distance RMax they are able to

interact with each other via their chemical fields. Changing RMax influences the final sorted

structure. If RMax is not large enough, instead of forming one single sorted structure the

two types of agents form multiple sorted structures, as seen in Figures 2.15 (a), (b) and

(c). However, if RMax is too large, more and more agents begin to interact with each across

the toroidal boundaries of the environment, which disrupts the sorting process, as seen in

Figures 2.15 (e) and (f). RMax values that are close to the optimal value of 300, e.g. 250

(as in Figure 2.15(d)), 350 and 400, produce nearly acceptable sorting results.

Acceptable Range of Parameter Values

Analyzing the results of the studies of the agent parameters, we identified the ranges of

parameter values that produce the desired, sorted configuration and summarize them in

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

39

(a) quality=0.49 (b) quality=0.65

(c) quality=0.54 (d) quality=1.21

(e) quality=0.88 (f) quality=0.65

Figure 2.15: Effect of changing RMax for both T1 and T2 agents. (a) RMax = 100;
(b) RMax = 150; (c) RMax = 200; (d) RMax = 250; (e) RMax = 450; (d) RMax = 500.

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

40

Table 2.3. The desired sorted structures produced from utilizing these parameter values

have a quality value above 1.40.

Table 2.3: Parameter value ranges that produce desired sorted structure.

Type λi PR PDetach PAttach TS RMax

T1 ≥ 3 0.4 – 0.7 ≥ 0.1 - ≥ 9 hrs 300 - 325

T2 > 0.0 ≥ 0.75 ≥ 0.1 R-R: < 1.0 - 300 - 325

These parameter value ranges may be better understood within the context of a robot

swarm application. For this application, distances can be measured in centimeters and time

can be measured in seconds. Robots would not interact via chemical signals, but rather

with radio signals that communicate the distance between a pair of robots. The robots

would have the ability to attach to each other. A single robot would have a diameter of

12 cm, and its maximum velocity would be 1cm/s. The parameter values of Table 2.3 are

valid for 200 T1 (blue) robots and 200 (red) T2 robots, initially mixed in a 500 cm × 500

cm arena. These values will produce a single sorted structure, where the T1 (blue) robots

form a central core surrounded by a layer of (red) T2 robots, as seen in Figures 2.4 and 2.9.

The λ parameters are scale factors used to determine a robot’s velocity, given the gra-

dient of the cumulative “chemical” concentrations in the environment (Equation 2.1). A λ1

value of 3 or greater will guarantee that the blue robots are fast enough to aggregate into a

central core before time TS , the time when the blue robots send out a signal that attracts

the red robots. Within a cell context, where the blue agents’ speeds are determined by

the value of λ1, it was found that TS needed to be at least 9 hours. This value gave the

blue agents sufficient time to aggregate. In the robotics scenario, the time units would be

minutes rather than hours. It was found that the speed of the red robots did not affect the

final outcome of the sorting, as long as it was non-zero. The value of λ2 only affects the

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

41

time needed to produce the final, desired configuration.

PR, the probability that a robot will respond to a “chemical” signal, needs to have

different values for the T1 and T2 robots. Values between 0.4 and 0.7 provide enough ran-

domness in the T1 aggregation process to allow the robots to “shake” into the desired central

blue core. Once this core is formed, the T2 robots need a strong and mostly deterministic

(PR ≥ 0.75) response to their attracting signal in order to create a tight and confining layer

around the blue core.

The value PDetach, the probability that robots will detach from each other, has a small

lower bound (0.1). We also found that PAttach, the probability that two robots will attach to

each, only significantly affects the sorted outcome when the probability that one red robot

attaches to another red robot is 100%. This situation tends to disrupt the sorting pattern.

Since we produce acceptable sorting results for a very wide range of PDetach and PAttach

values, an attachment capability may not be necessary for robots in a swarm application,

a point that requires further study.

A robot will only interact with another robot, i.e. exchange distance information, if the

robot is within a distance of RMax. We found that in order to produce a single sorted

structure with 400 simulated robots within a 500 cm × 500 cm arena RMax needed to

be between 300 and 325 cm. If RMax is lower than this range, multiple sorted structures

are produced. Our parametric studies highlight the fact there is a complex relationship

between arena size, robot density and RMax that warrants further study. See Section 2.5.3

for additional comments on this issue.

2.5.3 Environment Parameters

In order to better understanding the influence of global parameters on agent sorting, we

explored the parameter space associated with the system level of our simulations, such as

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

42

(a) quality=0.42 (b) quality=0.40

(c) quality=1.17 (d) quality=1.38

(e) quality=0.83 (f) quality=0.61

Figure 2.16: Effect of agent density. (a) 8002 grid, 400 agents, density: 0.0006
agents/unit2; (b) 7002 grid, 400 agents, density: 0.0008 agents/unit2; (c) 5002 grid,
200 agents, density: 0.0008 agents/unit2; (d) 5002 grid, 500 agents, density: 0.0020
agents/unit2; (e) 5002 grid, 600 agents, density: 0.0024 agents/unit2; (f) 4002 grid, 400
agents, density: 0.0025 agents/unit2.

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

43

agent density (by changing the size of the agent population and the computational arena),

noise in the system and the initial distribution of the agents. While fixing agent parameters

to be the ones in Table 2.2, we modified environment parameters one at a time in this study.

Agent Density

The density of agents in the computational arena may be varied by either changing the

total number of agents or changing the size of the arena. We have conducted both of these

experiments and a sampling of the resulting sortings are presented in Figure 2.16. When

the density is low and the agents are spread apart from each other, the blue agents are

unable to come together into a central core, either because the distances between agents

prevent interaction or because the agents don’t have enough time to aggregate before the

red T2 agents attempt to enclose the blue T1 agents. This can be seen in Figures 2.16 (a),

(b) and (c). Here the densities are 0.0006, 0.0008 and 0.0008 agents per unit squared. In

Figures (a) and (b) density is lowered by increasing the size of the arena. It can be seen in

Figure (b) that the blue agents formed three separate clumps. For comparison, the agent

density for the “optimal” result in Figure 2.9 is 0.0018 agents/unit2.

As density increases to near the optimal value a sorted structure with a high quality

value emerges, as in Figure 2.16(d). Further increasing density, by increasing the number of

agents as in Figure 2.16(e) and decreasing the size of the arena as in Figure 2.16(f), disrupts

the sorting process. The toroidal structure of the computational environment leads to the

agents forming a single, connected aggregate. In Figure 2.16(e) a slightly sorted structure

is formed. Increasing the density in Figure 2.16(f) significantly degrades the quality of the

sorting.

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

44

(a) quality=0.60 (b) quality=0.76

Figure 2.17: (a) Structure formed after decreasing the magnitude of noise during
movement. (b) Increasing the magnitude of the movement noise disrupts the sorting
process.

Noise

If an agent does not detect a chemical field or if it collides with another agent without

attaching, the agent makes a random movement during that time step of the simulation.

Also, all agents do not always follow a detected chemical gradient, they take random steps

with a certain probability. The magnitude of the random movement has an impact on

the final sorted structure. For example, when the step size is too small, e.g. 1 unit per

random movement during a single time step, agents are unable to sort properly, as seen

in Figure 2.17(a). There is insufficient noise in the system for the agents to achieve the

global minimum of the well-sorted structure, to use a Metropolis algorithm [70] analogy.

The initial randomness of the system is evident in the final result. Recall that we found

the optimal magnitude of the random step to be 1 to 6 units, with the radius of an agent

being 6 units. Increasing the magnitude of the random step to be between 6 and 12 units

also prevents proper sorting, as seen in Figure 2.17(b). Note the probability of taking a

random step for blue agents is constant at 50% and is a decreasing function of the C2

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

45

concentration for red T2 agents. This explains why the red agents have mostly formed into

a single encircling mass, while many of the blue agents create a “cloud” on the outside of

the aggregate. Red agents are less affected by the magnitude of the random step, since in

general they make fewer random movements.

Initial Conditions

All previous sorting simulations began with a uniform random distribution of the agents’

positions. In this set of experiments, we explored the effect of utilizing different distributions

when initializing the positions of the agents. Three experiments were performed. The first

used a Gaussian distribution with mean 0 and standard deviation (σ) of 1. The distribution

was sampled up to 3σ to produce starting locations for the agents, as seen in Figure 2.18(a).

The second experiment used a Landau distribution that was sampled in the range −6 to

10. A typical initial condition from this distribution is presented in Figure 2.18(b). In

the final experiment we used the Gaussian distribution for the red agents and the Landau

distribution for the blue agents, as seen in Figure 2.18(c). Utilizing the distributions in

this manner generates initial conditions that are opposite the desired result, with the red

agents predominately near the center of the environment and surrounded by blue agents.

100 agent-sorting simulations were performed with each of the initial conditions. Out of

the 300 simulations only one had a quality measure above 1.4. This was produced from the

mixed Gaussian/Landau distribution, and is presented in Figure 2.18(c). In fact, most of

the simulations produced unacceptable sorting results, with the average quality measure for

the Gaussian distributions being 1.09, 1.15 for the Landau distributions, and 0.919 for the

mixed Gaussian/Landau distributions. The best results for the other two distributions are

also presented in Figure 2.18, with the Gaussian distribution having a top quality value of

1.27, and the Landau distribution having a top quality value of 1.36. With one exception,

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

46

(a) Gaussian initial conditions, quality=1.27

(b) Landau initial conditions, quality=1.36

(c) Mixed Gaussian/Landau initial conditions, quality=1.49

Figure 2.18: Initial agent distributions and final, sorted results for a variety of initial
conditions. (a) Gaussian distributed initial condition, best sorted result; (b) Landau
distributed initial conditions, best sorted result; (c) Red T2 agents with Gaussian dis-
tributed initial condition, blue T1 agents with Landau distributed initial conditions,
best sorted result.

Chapter 2: Self-Sorting Primitives 2.5 Parametric Studies

47

we have only been able to produce the highest quality sorting results (with a quality measure

above 1.4) with simulations that have an initial uniform random distribution of the agent

locations. These results demonstrate that bias in the initial conditions disrupts the cell

sorting process, and that uniform random initial conditions are needed to produced the

desired, sorted outcome.

2.6 Conclusion

We have presented a 2-D chemotaxis-based algorithm that robustly creates a layered, sorted

structure from heterotypic self-organizing agents. Our self-sorting agents may be considered

truly self-organizing because they consist of properties and behaviors not exhibited by

related systems. Unlike previous work [72, 73, 108, 28], our agents agents do not know

their global position, do not contain a representation of the shape to be produced, are not

assigned a location in the final configuration, only interact with neighboring agents, base

their actions on local and internal information. In our system, agents of the same type (T1

or T2) execute the same program, are not directed by a centralized controller and therefore

do not act to minimize a globally evaluated function. We are able to achieve a self-sorted

result by following a chemotaxis paradigm inspired by cell biology. Agents emit chemicals

into the environment and follow gradients of the accumulated chemical field, as well as

perform prescribed actions like probabilistic attachment or detachment.

We have designed an evaluation mechanism to quantify the fitness/goodness of the final

sorted structure. We have identified the response magnitude to chemoattractant λ, probabil-

ity of responding to a chemoattractant PR, probability of detachment PDetach, probability

of attachment PAttach, and time between T1 agent’s first attachment and production of

chemoattractant C2, i.e., TS to be the important parameters influencing the sorting pro-

cess. Simply put, λ controls how fast a cell moves proportional to the chemical gradient it

Chapter 2: Self-Sorting Primitives 2.6 Conclusion

48

senses on the surface, therefore, λ controls how fast agents aggregate. PR introduces noise

in the system, which may enhance the system’s ability to find an optimal configuration.

PDetach and PAttach control the shape of the aggregate. TS controls when T1 agents begin to

attract T2 agents. A proper combination of these parameters ensures the formation of the

structure of the final sorted aggregate. Future work will involve interpreting the meanings

of the parameter ranges and exploring their biological significance. We have shown that

via parametric analysis, we are able to propose parameter ranges that robustly produce a

sorted structure with fitness value above a certain threshold.

While this process is robust, it only produces one specific sorted configuration, which

is achieved by changing parameters of a fixed set of cell actions. Additionally, in this

system, agents move on an underlying hexagonal grid, which causes the final structure to

display a macroscopic hexagon shape. In order to remove this underlying bias and to form

arbitrary shapes, we eliminate the hexagonal grid and allow agents to move in a continuous

2D space. The ultimate goal of this research is to produce a more general robust self-

organizing system that is capable of generating different types of macroscopic structures.

Therefore, we extend our biologically inspired agents to become general shape formation

primitives whose interactions are automatically discovered with genetic programming.

Chapter 2: Self-Sorting Primitives 2.6 Conclusion

49

Chapter 3: General Shape Formation Primitives

3.1 Introduction

Motivated by the ability of living cells to form specific shapes and structures, we extend

our previously developed cell sorting model, described in Chapter 2, to be a more general

self-organizing shape formation system for chemotaxis-inspired cellular primitives. Our cell

sorting system consistently forms a final sorted structure utilizing fixed local interactions

between agents. However, we aim to enhance the system to form various user-defined

shapes and structures. We modify the fixed local interactions in our cell sorting system to

be an artificial interaction function defined as a mathematical expression. We successfully

utilize genetic programming to evolve the local interaction functions for a number of user-

predefined macroscopic shapes.

In this work, virtual cells are first placed into a 2D environment with a random uniform

distribution, and the cells interact with each other via a chemotaxis paradigm. This inter-

action produces movements that lead them to aggregate into a single user-specified shape.

We call these self-organizing virtual agents morphogenetic primitives (MPs). Each MP is

represented by a small disk and emits a ‘chemical’ which accumulates in the environment.

An MP detects the cumulative field at eight receptors on its surface, and calculates the

field gradient from this input. MPs move in the direction of the field gradient with a speed

proportional to the magnitude of the gradient. As seen in Figure 3.1, by employing these

relatively simple chemotaxis-inspired behaviors MPs are able to self-organize into macro-

scopic shapes; thus providing a distributed capability that could be useful for swarm and/or

reconfigurable robots.

50

Figure 3.1: Morphogenetic primitives self-organizing into a gear shape.

While MPs’ fundamental interaction is based on a chemotaxis-inspired paradigm, we

do not limit their behaviors/properties to be physically realistic or completely consistent

with biology. Instead, developmental biology provides a motivating starting point for MPs.

As a way to customize chemotaxis-inspired cells for shape formation, we alter the chemical

concentration fields around individual cells. Instead of the chemical concentration dropping

off as a function of distance r (1/r, the physically accurate description), we define the

concentration field with a mathematical function of cell-cell distance d, one cell’s angular

location θ in another cell’s local coordinate system and simulation time t. The function set

of the parameters is F = {+,−, ∗, /, exp, log, sin, cos}.

At this time, there is no prescriptive way to specify a particular local field function that

will direct MPs to form a specific macroscopic shape. If we use a binary tree structure to

represent the field functions, a tree with depth k has O(4n · 8n) variations, where n = 2k−1,

Chapter 3: Shape Primitives 3.1 Introduction

51

4 is the cardinality of the terminal set T = {constant E, d, θ, t} and 8 is the cardinality of

the function set F . Given the enormous size of the space of field functions that needs to

be searched, we employ genetic programming [62] to produce the mathematical expression

that explicitly specifies the field function. In order to meet the substantial computational

requirement imposed by our evolutionary computing approach, we have implemented a

master-slave form of the distributed genetic programming process. The fitness measure

associated with each individual field function is based on the shape that emerges from the

chemical-field-driven aggregation simulation, and determines which functions will be passed

along to later generations. The genetic process stops once an individual (i.e., a mathematical

expression) in the population generates the desired shape via a chemotaxis simulation, or

after a certain number of generations have been produced and evaluated.

With this algorithm, we have successfully evolved chemical field functions for a number

of simple shapes. See Figure 3.6 through Figure 3.9. These results furnish the evidence

that supports the proposition that biological phenomena offer paradigms for designing cel-

lular primitives for self-organizing shape formation. Additionally, evolutionary computing

techniques, specifically genetic programming, have been crucial for discovering the detailed

local interactions that lead to the emergence of macroscopic shapes and structures.

3.2 Related Work

Fleischer [44, 43, 45] created a cell-based multi-mechanism developmental model for study-

ing emergent phenomena observed in biological systems, e.g. formation of axes, segmented

patterns and hierarchical structures. He also applied his cell interaction simulation system

to computer graphics to produce an approach to cellular texture generation [46]. Sims

[90] describes one of the first applications of evolutionary techniques to computer graphics.

Genetic programming is used to create functional representations of intricate, compelling

Chapter 3: Shape Primitives 3.2 Related Work

52

images and solid textures. This approach was extended to define 3D procedural models

and parameters for dynamical systems [91], and to create the structure and behaviors of

virtual creatures [92]. Eggenberger Hotz [33, 56] proposed the use of genetic regulatory

networks coupled with developmental processes for use in artificial evolution and was able

to evolve simple shapes. The combination of artificial evolutionary techniques and devel-

opmental processes provides a comprehensive framework for the analysis of evolutionary

shape creation.

Theraulaz and Bonabeau [99, 100] present a modeling approach based on the swarming

behavior of social insects, a type of swarm intelligence [15]. They combine swarm techniques

with 3D cellular automata to create autonomous agents that indirectly interact in order to

create complex 3D structures. This indirect interaction, known as stigmergy [101], allows

the agents to act cooperatively, but independently, through a stimulus-response mechanism

based on modifications made to the environment. Bonabeau et al. [16] apply genetic algo-

rithms (GA) to the stigmergic swarm-based 3D construction method in order to direct the

overall process.

Nagpal et al. [72, 73] present techniques to achieve programmable self-assembly. Cells are

identically-programmed units which are randomly distributed and communicate with each

other within a local area. In this approach, global to local compilation is used to generate the

program executed by each cell, which has specialized initial parameters. Doursat [27, 29, 30,

31] proposed a model for artificial development which combines proliferation, differentiation,

self-assembly, pattern formation and genetic regulation. Via genetic-like regulation at the

agent level, the agents can self-organize into a number of patterned shapes and structures.

Beal [12] presents the concept of functional blueprints for grown systems. It is an ap-

proach for specifying a system in terms of desired performance and a means of incrementally

Chapter 3: Shape Primitives 3.2 Related Work

53

correcting deficiencies. By defining the deficiency as a lack of oxygen in a developing biolog-

ical system, he demonstrates that a virtual vascular system may be dynamically created to

maintain the functionality of the overall system as it develops and expands. Werfel [105] de-

scribes low-level primitives based on capabilities evident in biological systems, with the goal

of developing a basis for engineering developmental processes that may be realizable with

living cells. The primitives implement biologically realistic morphogen gradients to produce

structures of desired size, provide positional information, and trigger genetic cascades that

lead to the growth of more complex structures.

In the field of robotic swarms Stoy and Nagpal [95, 96] present an approach to self-

reconfiguration based on directed growth, where the desired configuration is grown from

an initial seed module. All modules in the robot are connected, and change from an ini-

tial configuration to a desired configuration, with the growth guided by a representation

of the desired configuration. Shen et al. [88] proposed the Digital Hormone Model as a

distributed control method for robot swarms. In one set of experiments, cells/robots are

able to generate reaction-diffusion patterns on a grid in a distributed fashion. In another

set of experiments, robots are attracted and aggregate around targets sensed over short dis-

tances. By electing leader(s) as barycenter(s), propagating gradients of varying structure

and using these gradients as instruction conditionals, a swarm of simulated robots devel-

oped by Mamei et al. [68] are able to self-organize into a number of simple shapes such as a

circle, ring, lobes and polygons. Swarm chemistry, proposed by Sayama [81, 82] and based

on Reynold’s boid model [78], is an approach for designing spatio-temporal patterns for

kinetically interacting, heterogeneous agents. An interactive evolutionary method has been

used to define system parameters that lead to agent segregation and structure formation.

Werfel and Nagpal [106, 107, 108] present algorithms that employ extended stigmergy

Chapter 3: Shape Primitives 3.2 Related Work

54

for the assembly of solid structures. The elements are separated into mobile and structural

components (i.e., robots and modular blocks, which are the same shape but have different

functions). The robots communicate indirectly through information that is stored in the

blocks and transferred during attachment. The robots and blocks are placed in an obstacle-

free workspace, along with a beacon indicating the starting location of the construction.

The robots collect blocks from caches and arrange them into a structure. A block can

immediately obtain, from its neighboring blocks, information about its global position and

the present and desired final structure.

Our work is similar to previous work in that 1) we make use of a chemotaxis-inspired

cell aggregation model; 2) we apply evolutionary computing to discover interaction rules;

and 3) we develop an approach for multi-agent shape composition. However, our approach

is novel compared to previous work in that it contains all of the following features. 1)

All morphogenetic primitives are randomly placed in the environment, are identical, and

perform the same simple actions. They require no special seed primitives or customized

initialized states. 2) No initialization of spatial information is needed in the computa-

tional environment. We utilize a toroidal environment where all positions are considered

identical and play no special role. 3) Individual MPs do not know their location in any

external/global coordinate system, and deposit no unique information at specific locations

in the environment. 4) MPs do not contain a representation of the predefined global shape

that is being composed. 5) Genetic programming is used to explore the space of concentra-

tion field functions that surround the individual primitives. Automatic fitness evaluation is

implemented in our method, which calculates how similar an aggregate is to the final shape

and produces a scalar fitness value. Genetic programming uses this fitness value to generate

a field function that directs the individual primitives to form into a user-specified shape.

Chapter 3: Shape Primitives 3.2 Related Work

55

Terminate?

End

(d+Log(cos(theta)))

((exp((theta-theta))-sin(Log(theta)))+
(Divide(Log((0.142492)),(d*d))*
Divide(((-0.805624)-t),Divide(theta,t))))

((Log(d)-((0.166099)*theta))+
Divide(t,(0.798272)))

 0.208388

 0.165218

0.161841

0.516388(d-sin((d+(0.377292))))

Open
Beagle
(GP
framework)

Modified
Cell
Simulation

Fitness
Evaluation

Target Shape (2D image)
MP Aggregate (2D image)

Fitness Value
Chemical Field Functions

Figure 3.2: Overview of the genetic programming process that produces the chemical field functions of morphogenetic primitives.

C
h
a
p
t
e
r
3
:

S
h
a
p
e
P
r
im

it
iv
e
s

3
.2

R
e
l
a
t
e
d

W
o
r
k

56

3.3 Approach Overview

There are two major components in the self-organizing shape formation process: an MP

aggregation simulation system and a genetic programming framework. Using chemotaxis as

a paradigm, the aggregation simulation system calculates the movements of each primitive

during the spatial self-organization process. The genetic programming (GP) framework is

used to discover the local interaction rules employed during the computed simulation. It is

these rules that direct MPs to aggregate into user-specified shapes and patterns. The local

interactions rules are explicitly represented as ‘chemical’ field functions with variables of

cell-cell distance d, one cell’s angular location θ in another cell’s local coordinate system,

and simulation time t, i.e., f(d, θ, t). In the context of a GP framework, the ‘chemical’ field

functions are the individuals to be evolved [7].

The general approach, which has been implemented within the Open Beagle Frame-

work [48], to defining the field functions that ultimately produce the user-desired shape is

presented in Figure 3.2. We start with a population of functions that is initially randomly

generated. Each function is compiled into a chemotaxis-based cell aggregation simulation,

and defines the chemical field that surrounds all of the individual cells for a particular

aggregation simulation. A chemotaxis simulation is then performed. Each MP simulation

usually produces some kind of aggregated structure. The resulting MP configuration (the

simulated aggregation) is compared to the user-desired shape, and a scalar fitness value

is calculated that quantifies how well the computed shape matches the desired shape. A

subset of the top candidates is then used to create the next generation of field functions.

The process continues until a field function produces the desired shape or the maximum

number of generations is reached.

We have utilized this new approach to define morphogenetic primitives that aggregate to

Chapter 3: Shape Primitives 3.3 Approach Overview

57

Emit Chemical Sense Cumulative
 Chemical Field

Calculate Gradient
 and Step

 Move
(Take Step)

Sense Neighbors’
 Orientation

Collision? Take Random Step
Calculate Average
 Orientation

Increment Orientation
 Towards Average

Yes

No

Figure 3.3: Overview of the steps executed in the chemotaxis simulator.

form a number of user-defined shapes, e.g., an ellipse, a diamond, an hourglass, a cross, the

letter ‘b’, the letter ‘S’, a star and a triangle. In the process of evolving the field functions

for user-defined shapes, a few pleasant surprises emerged. Most of them included repeated

patterns, e.g., stripes, spots and sine waves, but interestingly a gear shape emerged from

the evolutionary process. We believe that this new approach to automated shape formation

can be extended and applied to a number of applications, including the control of robotic

swarms, motion specification of animated crowds, and generative model creation.

For example, when applying this approach to robotic swarms, each MP is now an au-

tonomous robot that broadcasts a weak signal into its immediate neighborhood, in order

to detect its neighbors. Robots can only sense signals emitted by other robots within a

certain distance, because of the weakness of the signal. Neighboring robots respond to the

detection signal, and from this the transmitting robot is able to produce a neighbor list.

Once a robot has a neighbor list, it communicates with its neighbors to get distance and

orientation information, which can be used to calculate the concentration values needed for

its local movements. Concentration gradients can be calculated by having the robots take

small random steps and reacquire concentration information. Detection signals are sent out

at regular intervals in order to maintain a correct neighbor list.

Chapter 3: Shape Primitives 3.3 Approach Overview

58

3.4 Morphogenetic Primitives

3.4.1 2-D Biological Cell Aggregation Simulation

MPs are based on a computational model and software system that is capable of simu-

lating chemotaxis-based cell aggregation in 2-D [38, 40]. This 2-D chemotaxis-based cell

aggregation model incorporates fundamental parameters involved in cell-cell aggregation.

Using appropriate approximations / assumptions with efficient and effective algorithms, the

model forms the core of a robust and extensible simulation environment, which has enabled

us to study and identify the critical components of cell interaction and behavior that most

influence aggregation outcomes.

In this earlier system, each cell is defined by a collection of physiologically relevant

parameters and actions, such as the location of the cell, age, life cycle stage, chemoattractant

secretion and response rates, diffusion radius, proliferation rate, adhesivity and number of

attached cells. Virtual cells in the system are able to emit chemoattractants, sense the

chemoattractant gradient, move in the direction of the gradient, proliferate, adhere to other

cells, age and die. The 2-D cell aggregation model was later extended to simulate self-

sorting of heterotypic agents [37, 39]. The 2-D cell aggregation model provides a critical

computational component for our morphogenetic primitive simulation framework.

Each MP aggregation process begins by randomly placing a number of MPs (500 for

our examples) with uniform random positions and orientations in a periodic (i.e., toroidal)

computational environment. In order to avoid outcomes influenced by boundary conditions,

we make our computational environment toroidal. i.e. the top edge of our simulation arena

is connected to the bottom edge, and the left edge is connected to the right edge. A single

aggregation simulation is comprised of a series of time steps. For our current work we

have disabled several of the features implemented in our earlier work, namely cell adhesion,

Chapter 3: Shape Primitives 3.4 Morphogenetic Primitives

59

division and death. For each time step, each primitive performs a prescribed set of actions,

which are outlined in Figure 3.3 and described in detail in the remainder of this section.

3.4.2 MP Design Principles

Several principles were followed when developing morphogenetic primitives. 1) MPs are

autonomous ‘agents’. Each MP is an independent entity that senses the environment,

responds to it, and then modifies the environment and its internal state. There is no

‘master designer’ directing the actions/motions of the MPs. 2) Actions are based on local

information. Each primitive emits a finite field that can be sensed only by other primitives

within a certain range. The only information received by an MP is gathered at its surface,

namely the concentration of the cumulative field and contact with immediate neighboring

MPs. 3) MPs respond to information with prescribed behaviors. The actions performed by

each MP are the same, but the specifics of the individual actions are based on information

received from the environment. 4) While their actions are determined by the ultimate shape

that they will produce, MPs do not carry or access information about the shape. 5) MPs do

not know their current global position nor their final position relative to the specified shape.

6) The shape emerges from the aggregation of local interactions and behaviors. Rather than

follow a plan to produce the shape, MPs sense, change and respond to the cumulative field

concentration. This simple behavior, when combined with somewhat complex individual

fields, will direct the MPs to take individual actions, based on local information, that will

ultimately direct them to aggregate into a user-defined, macroscopic shape.

3.4.3 Movement

Similar to the behavior of cell-sorting agents, instead of implementing a complex form of

chemotaxis-based motion [17, 59], we adopted a simplified chemotaxis-inspired method of

Chapter 3: Shape Primitives 3.4 Morphogenetic Primitives

60

calculating MP movement. The ‘chemical’ gradient is used to determine the primitive’s

velocity. We assume that MPs travel at a terminal velocity through a viscous fluid envi-

ronment, therefore an MP’s velocity is directly proportional to the chemical field gradient

(∇C). The calculation of the chemical field gradient is described in Section 2.3.1 and further

defined in Equation 2.2. When an MP moves in the direction of the chemical gradient, its

velocity (V) is calculated as

V = λ ∗ ∇C, (3.1)

where λ (1 for our examples) is a constant that determines the magnitude of a cell’s response

to the gradient. At each simulation time step (∆t) the displacement (∆x) of the MP is

∆x = V ∗∆t. (3.2)

3.4.4 Rotation

Each MP is assigned its own local coordinate system with a random orientation ω between

0◦ to 359◦, and is allowed to rotate. Additionally MPs are given the ability to detect the

orientation of close neighbors and are programmed to rotate in a way that aligns their

local coordinate system with the average orientation of immediate neighbors [6], a behavior

observed in living cells [32].

In our simulations, ‘nearby’ neighbors are those MPs within a distance of four cell-radii.

Each MP identifies its nearby neighbors, detects its neighbors’ orientations, and calculates

an average orientation ω̂avg via a vector average of the neighbors’ orientations. To perform

local alignment, MPs incrementally rotate one degree along the shortest arc towards the

average orientation of its neighbors during each time step. Equations 3.3 through 3.6 detail

Chapter 3: Shape Primitives 3.4 Morphogenetic Primitives

61

these actions.

ω̂ = cos(ω) + isin(ω), (3.3)

ω̂avg =
1

n

n∑
j=1

ω̂j = x+ iy j ∈ immediate neighbors, (3.4)

ωavg =


acos(x/||ω̂avg||) y ≤ 0,

360◦ − acos(x/||ω̂avg||) otherwise.

(3.5)

ωnew =


ω + (ωavg − ω)/|ωavg − ω| |ωavg − ω| ≤ 180◦,

ω − (ωavg − ω)/|ωavg − ω| otherwise.

(3.6)

ω̂ is vector presentation of an MP’s orientation ω and ωnew is the new orientation after

the MP has rotated towards the average of its neighbors’ orientations. These incremental

rotations will eventually lead to the global alignment of all of the MPs’ local coordinate

systems [98].

3.4.5 Randomness in the System

Similar to stochastic optimization [84], randomness is injected into the system as a small

amount of noise. Noise is important in preventing the set of MPs from forming into local

minima configurations, and is included in our simulations in a number of ways.

When a displacement produced by following the chemical gradient, as in Equations 3.1

and 3.2, causes an MP to collide with another MP, a small step (1 to 6 units) is taken in

a random direction with 90% probability, instead of the calculated step that produced the

collision. After 1 out of 10 detected collisions, the MP does not move at all. If a second

collision occurs after taking the random step, the primitive does not move and remains at

Chapter 3: Shape Primitives 3.4 Morphogenetic Primitives

62

its current location.

MPs follow the chemical field gradient with probability PFollow, which is a function of

the current simulation time tcurrent and end time tend of the simulation, and is defined as

PFollow = 0.5 ∗
(

1− cos
(
π ∗ tcurrent

tend

))
. (3.7)

This is a cosine function that goes from 0 to 1 over the span of the MP simulation.

When an MP does not follow the chemical gradient, it takes a small random step. As

simulation time increases the value of PFollow increases, and fewer and fewer MPs make

random movements; thus stabilizing the shape of the aggregate. This type of decreasing

randomness is motivated by the annealing process of the Metropolis algorithm [61, 69].

Finally, in order to eliminate the side effects that might be associated with the orga-

nization of the internal data structures in our simulation system, MPs are processed in a

random order at each time step of the simulation, rather than in the order in which they

are stored. We have found that in general this improves the robustness and effectiveness of

the approach. See Section 3.7.1.

3.5 A Genetic Programming Framework

3.5.1 Genetic Programming

Genetic programming (GP) is a type of evolutionary computation that provides an au-

tomated approach to software and function development based on genetics, reproduction,

mutation, recombination, and selection. GP evolves a computer program or mathematical

function based on its ability to perform a specified computational task, as evaluated by a

fitness function [34, 62]. The underlying concept of evolutionary computation is: given a

population of individuals and provided an evolutionary process of variation based on the

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

63

fitness of the individuals, produce a new population with higher fitness values than the

previous population.

The evolutionary computation approach to a certain problem consists of the following

components: individuals, fitness evaluation, selection and variation, initialization, a termi-

nation condition and control parameters. An individual is a representation in the form of a

solution to the problem. For example, when GP is used to automatically generate computer

programs, each individual of a GP generation is a parse tree that holds software instruc-

tions. Therefore, a population of individuals, which are going to evolve in the evolutionary

process, represents a number of candidate programs that provide solutions to the problem.

The fitness function defines how close a candidate solution is to the desired solution. A

threshold value for this function defines the termination condition. In other words, fitness

evaluation defines a similarity metric between an individual outcome and the final goal.

The more similar the two are, the better (more fit) the individual is considered to be.

There are two kinds of selections: parent selection and survival selection. Parent se-

lection or mating selection provides a higher probability that the higher fitness individuals

will become parents in the next generation. While survival selection is a replacement strat-

egy that swaps newly-generated individuals with older ones in order to increase the overall

fitness of the new generation [34]. Selection is responsible for the quality improvement

of the population. Variation, which includes reproduction, recombination and mutation

procedures, is the mechanism that creates new individuals from the existing ones [62].

Genetic programming, as outlined in Figure 3.4, is different from other types of evolu-

tionary computing algorithms in that the individuals are parse trees consisting of elements

from a Function Set F and a Terminal Set T. Elements of T reside in the leaves of the

parse trees and the symbols of F are stored in the internal nodes. The ramped half-and-

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

64

Initialization

Terminate?

Fitness Evaluation

Crossover Mutation Reproduction

i = i + 1i = i + 1i = i + 2(or i = i + 1)

End

Yes

No

Yes

No

Parent Selection

i = population size?

Figure 3.4: Genetic programming flowchart.

half method (one of the most common) is employed for initialization [34]. It utilizes the

parameter DMax, the maximum depth of the parse tree. The initial generation is generated

by two methods with equal probability. 1) Full method: each branch of the tree has the

same depth up to DMax. 2) Grow method: the tree is constructed from a root with tree

nodes chosen randomly from both the F and T sets as long as the depth of the tree does not

exceed DMax. The most common termination criteria either specify the maximum number

of generations or the fitness threshold value. While the fitness evaluation function is spe-

cific to the particular problem, the process of variation can be abstracted from the problem

domain. Crossover in GP is performed by swapping subtrees between two parents (in the

most common case). Mutation is mostly implemented by replacing a subtree of the selected

individual by a randomly generated subtree, with the constraint that the depth of the new

individual does not exceed DMax. This is known as single-point mutation. Reproduction

simply copies the parent individual to create offspring.

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

65

When using GP to produce solutions, various combinations of selection and replace-

ment mechanisms can be applied. For example, for parent selection, one can apply fitness

proportional selection, where the probability of selecting an individual is a proportional

to the fitness of that individual. After obtaining parent(s), GP applies genetic operations

like crossover and mutation on the parent individuals and generates new individuals as

offsprings. One then can specify how the offsprings replace individuals in the previous gen-

eration to construct a new generation. For example, one can use generational replacement

to replace all individuals in the previous generation with newly generated offspring. After

specifying the initialization procedure, the selection mechanism, the replacement scheme,

the fitness evaluation process and related parameters, the GP method is executed, and

solutions are evolved and evaluated.

3.5.2 Chemical Field Evolution via Genetic Programming

The chemical field function C around an individual MP has the form 1/C(d, θ, t). We define

the secondary function C to be polynomial and trigonometric functions with variables of

cell-cell distance d, one cell’s angular position θ in another cell’s local coordinate system,

and simulation time t. We utilize a genetic programming framework to evolve the secondary

function C. We use 1/C() in the aggregation simulation in order to increase the likelihood

of creating a chemical field function that decreases with distance from an MP. In fact,

since the variable d is a function included in the initial population, 1/d is a candidate

solution evaluated in the first generation of the GP process. We also include real numbers

E in the chemical field function. The chemical field functions are the genotypes of the

evolutionary process and are stored as a prefix parse tree. The aggregated forms produced

by the chemotaxis simulator are the phenotypes associated with the chemical field functions

in a population.

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

66

The details of the morphogenetic primitive genetic programming process, as illustrated

in Figure 3.2, are the following. The ramped half-and-half [34, 62] method is used to

generate the initial population of functions. Each MP aggregation simulation employs one

function from the population as the chemical field function for all of its MPs. A simulation

is performed for each chemical field function, producing an image of the aggregated result

that emerges from the local interactions directed by the function. Each aggregated result is

then evaluated by the fitness function, which compares the aggregate image with a target

image. A fitness value (a scalar between 0 and 1) is assigned to each individual that

quantifies how closely the resulting aggregate matches the target shape. The fitness values

are returned to the GP framework. Parent selection is then performed on the population

based on the fitness value and variation takes place. Generational replacement is used for

survival selection, which means that the offspring replaces the parents from the previous

generation. The GP process repeats until the termination criteria are met, either after

generating a maximum number of generations or the fitness of an individual surpasses the

threshold, i.e., the associated aggregate is approximately the same shape as the target.

We can also seed the first generation with functions produced by a previous run of

the shape composition process. For example, when trying to generate the hourglass shape

(Figure 3.7 (left)), we first ran 50 generations of the GP-based shape composition process

and then picked the 100 top individuals from all 50 of the generations to be the first

generation for another cycle of a new GP process.

3.5.3 Fitness Function

The fitness function defines the similarity between two shapes, the aggregate generated

by the MPs under the influence of the chemical field function and the user-defined target

shape. Both the final aggregate from the MP simulation and the user-defined target shape

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

67

Figure 3.5: Aggregated MPs are aligned with a target shape. The square of the ratio
of overlapping black pixels and the total number of black pixels in the target shape
gives the fitness value for the aggregate.

are represented as black and white images. For the aggregates, the locations occupied by

the MPs are marked with black pixels. The targets are represented with images of black

solid geometric shapes.

The fitness function is based on comparing these images at the pixel level. It is important

to keep the total area of the MPs (the area of one MP times the total number of MPs)

approximately equal to the area of the target shape. Since MPs are not aware of a global

coordinate system, we do not want the shape of the resulting aggregate to be tied to a

specific fixed orientation. We therefore align the aggregated shape with the target shape

before applying the fitness function. This is accomplished by applying a translation and

rotation to the candidate aggregated shape that aligns its centroid and major axis with

those of the target shape, as seen in Figure 3.5. This allows MPs to aggregate into the

desired shape, but not necessarily in the same position and orientation of the target. Given

the toroidal structure of the computational environment a specialized technique is required

to calculate the centroid of the MP aggregate [3]. (See Appendix A for more details.)

Once the alignment is completed, the fitness function is calculated as the square of the

ratio of the number of black pixels that overlap in the aggregate and target images and the

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

68

total number of black pixels in the target shape:

f =

(∑
pi, pi ∈ Sa ∩ St∑
pj , pj ∈ St

)2

, (3.8)

where f is the fitness of the individual, pi are the black pixels that are present in both

the aggregate and target images, pj are the black pixels in the target image, Sa and St are

the aggregate and the target shape images. The floating-point number f , which has a value

between 0 and 1, is assigned as the fitness of the chemical field function used to generate

the aggregate shape.

A large number of computed aggregates have an amorphous, blob-like shape, which can

produce significant overlap with most target shapes and a high fitness value. Squaring the

ratio makes the fitness function more sensitive to shape similarity, and produces a high

value only when the two shapes are truly similar. Therefore, adding the square term to the

fitness evaluation function decreases the fitness value for these amorphous shapes, and thus

makes it better at identifying aggregates that have the target’s shape.

3.5.4 GP Parameters

The following summarizes the components in the GP process.

• Individuals: Each individual is represented as a prefix tree with a maximum depth

DMax = 17. Elements of the terminal set are stored in the leaf nodes and elements

of the function set are stored in the internal nodes.

• Function and terminal set:

F = {+,−, ∗, /, exp, log, sin, cos} and T = {E, d, θ, t}

In order to maintain the closure property of the GP process [34, 62], we use protected

division and protected logarithm, which allows for the most general description of

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

69

the functions. A division by zero is reprogrammed to be division by one. And the

logarithm of a number smaller than 10−300 is clamped to be the logarithm of 10−300,

base e. Here, E ∈ < is a real number; d is the distance between two MPs, θ is the

angular location of one MP measured in the local coordinate system of another MP,

and t is the simulation time.

• Selection: Parent selection is proportional to the fitness value and uses tournament

selection (tournament selection size k = 7), which randomly chooses k individuals out

of the population and returns the one with the best fitness. Generational replacement

is used for survivor selection.

• Variation: When making new offspring a swap subtree crossover operation and

single-point mutation, i.e., replacing a subtree with a stochastically generated sub-

tree, are used.

• Fitness evaluation: We compare an image of the resulting aggregate with an image

of the target shape. The comparison produces a fitness value, a floating-point number

between 0 and 1, with 1 being the maximum fitness (similarity) value.

Parameters used to control the GP process are:

• population size: 100.

• maximum number of generations: 50 or 100.

• crossover probability: Pc = 0.75 to 0.9.

• mutation probability: Pm = 0.1 to 0.25.

• DMax: 17 (maximum parse tree depth),

• k: 7 (tournament selection size).

Chapter 3: Shape Primitives 3.5 A Genetic Programming Framework

70

3.5.5 Distributed Master-Slave Model

Given the magnitude of the search space, i.e., all possible polynomial and trigonometric

functions constructed from the function set and the terminal set in a parse tree of depth

DMax, and the significant amount of computation needed to search and evaluate it, we have

developed a distributed computing system to produce MP solutions [5]. Open Beagle [48],

a C++ evolutionary computing framework, has been utilized and altered to function as the

computational core of the distributed genetic programming environment. With Unix shell

scripting [18], we implemented an n-slave, 1-master system for distributed computation of

MP simulations.

The master process adaptively sends out individual functions over a network to a number

of slave processes, and performs most of the genetic programming steps. Each slave node

hosts one slave process. The slave process is responsible for incorporating the individual

(chemical field function) into an MP simulation program, running the simulation, comparing

the resulting aggregated shape with the user-defined shape and returning a fitness value to

the master process. The master process then utilizes the fitness value associated with

the individual function to perform genetic programming operations. It generates a new

population, which is distributed once again to the slave nodes, and concludes the whole GP

process once the termination criteria are met.

3.6 Results

3.6.1 MPs with Fixed Orientation

In the first experiments utilizing our approach, all MPs have the same, fixed orientation.

MPs do not rotate and do not attempt to align with their neighbors, since they share a

common coordinate system. The MP simulations performed during the GP process con-

Chapter 3: Shape Primitives 3.6 Results

71

sisted of 500 primitives, where each primitive has a radius of 5 units1. The MPs move in a

toroidal computational environment of 500×500 units on a hexagonal grid, where locations

on the grid are separated by 1 unit. Each simulation is run for 1000 time steps.

The target shapes given to the MP aggregation framework include an ellipse (Figure 3.6

(left)), a diamond (Figure 3.6 (right middle)), an hourglass (Figure 3.7 (left)), a cross

(Figure 3.7 (right middle)), the letter ‘b’ (Figure 3.8 (left)), the letter ‘S’ (Figure 3.8 (right

middle)), a star (Figure 3.9 (left)) and a triangle (Figure 3.9 (right middle)). The best

resulting MP-generated shapes are placed next to the target shapes in these figures. The

‘S’ shape did not completely converge on the desired shape. While the target letter ‘S’ is

a stand-alone object, the associated MP aggregate is a continuous shape that is connected

along the top and bottom edge, because of the toroidal structure of the computational

environment.

Since the field functions generated by the evolution process are very complex, we simpli-

fied them with Maple(TM) and conducted tests to ensure that the simplified functions still

produce the same aggregate structures. The simplified field functions that produce these

shapes are listed in Table 3.1, along with the number of generations needed to derive the

original, unsimplified functions.

1One unit of length is equal to a pixel width.

Chapter 3: Shape Primitives 3.6 Results

72

Figure 3.6: Ellipse: (left) Target shape. (left middle) Self-organized MPs. Diamond:
(right middle) Target shape. (right) Self-organized MPs.

Figure 3.7: Hourglass: (left) Target shape. (left middle) Self-organized MPs. Cross:
(right middle) Target shape. (right) Self-organized MPs.

Figure 3.8: Letter ‘b’: (left) Target shape. (left middle) Self-organized MPs. Letter
‘S’: (right middle) Target shape. (right) Self-organized MPs.

Figure 3.9: Star: (left) Target shape. (left middle) Self-organized MPs. Triangle:
(right middle) Target shape. (right) Self-organized MPs.

Chapter 3: Shape Primitives 3.6 Results

73

Table 3.1: Summary of shapes, field functions, and the generation that produced the function.

Shape Field Function Generation

ellipse (ln (d/t)− ln (cos (θ))) td−1 7th

diamond
(
ln (d/t)− 0.924414 θ−1 − 0.36356

)
td−1 11th

hourglass 3.4950 θ2 cos
(
2d/
(
ln
(
cos
(
−ed + d

))))
t−1 + d 54th

ln

(
2 d− 2 θ + 0.94606 (d− cos (0.23102 θ))

cross ·
(
2 d− 2 θ + 0.94606 (ln (d) (−2.4533− 2 θ + d))/(ln (ln (d))) + 0.94606 t−1

)
30th

· (cos (0.23102 θ))−1 + (sin (t) + t)/(cos (t)) + 0.94606 t−1

)
letter ‘b’ 0.39755 d+ 0.39755 cos (θ) + 0.39755 sin (θ) 14th

− sin (0.67004 + θ)

(
d+ 0.67004 +

(
d− 2.1101 (sin (0.67004 + θ))2

− (d+ 0.57590)
(
− sin (sin (0.67004 + θ))

(
−300 (e0.0016497+t ln (10))/(t (t+ d))− t+ θ − 0.67004

)−1

letter ‘S’ +0.20668 d
)−1)

(sin (0.67004 + θ))−1 − (d+ 0.57590) 27th(
sin (ln (−0.52255 θ/t) (1.1275 + cos (t)))

)−1
)−1

star cos (ln (cos (cos (ln (t/d))))) 42nd

triangle cos (cos (ln (t/(cos (cos (cos (cos (ln (d))))))))) 47th

C
h
a
p
t
e
r
3
:

S
h
a
p
e
P
r
im

it
iv
e
s

3
.6

R
e
su

lt
s

74

While these functions are complex compared to the simplicity of the target shapes,

our results demonstrate the proof-of-concept that paradigms for spatial self-organization

algorithms may be derived from the morphogenetic behaviors of cells. It has been shown that

local interactions based on a chemotaxis paradigm can produce a self-organizing aggregation

that leads agents to form into a user-specified shape. As stated in section 3.2, compared with

other approaches, our method does not require the primitives to possess macroscopic shape

information, to establish a global coordinate system, or to know their global positions in the

environment. Nor does our method require a specialized seed primitive, or a global gradient

information, which is generally used in potential field methods. In our method, user-defined

shapes simply emerge from numerous local interactions among the self-organizing low-level

primitives.

Given the stochastic nature of genetic programming, a number of pleasant surprises

were produced during the evolution process. These are field functions that direct MPs to

produce unwanted, but still quite interesting, shapes and patterns. A set of these surprising

results are included in Figure 3.10. The most remarkable of these accidental shapes are the

gear shapes in the first row.

Chapter 3: Shape Primitives 3.6 Results

75

Figure 3.10: Unexpected shapes produced by a variety of MPs.

Chapter 3: Shape Primitives 3.6 Results

76

3.6.2 Rotating, Self-Aligning MPs

In the second set of experiments we investigated MPs’ capacity to properly self-organize

given that they are initialized with both random locations and orientations and allowed to

align with the coordinate systems of their immediate neighbors. Our results demonstrate

that MPs, given these random initial conditions, not only are able to form into user-specified

shapes but can also self-align into a common orientation. The latter outcome empirically

corroborates the theoretical result of Tanner et al. [98].

We used MPs with a common, fixed orientation in the genetic programming process

when attempting to evolve chemical field functions for target shapes. This is the case for

the shapes in presented in Figure 3.6 through 3.9. The field function evolution process

with fixed orientations is computationally less expensive than with self-aligning MPs with

arbitrary orientations (described in Section 3.4.4). We have found that the number of

generations needed to generate field functions is shorter when MPs are not allowed to rotate

and have a common coordinate system. However, the chemical field functions evolved with

fixed orientation primitives are also able to direct primitives with different orientations to

aggregate into the same target shape, as long as they self-align into a common orientation,

as seen in Figures 3.11 through 3.18.

In these figures the orientation of an MP is visualized with the HSV color scheme by

mapping orientation angle to the Hue channel. Here, ω = 0◦ maps to red, ω = 120◦ maps to

green, and ω = 240◦ maps to blue. Each MP is displayed as a colored disk, with a short line

indicating its orientation. The horizontal right direction(+x) is defined as ω = 0◦. In the

color examples it can be seen that the MPs both align to form a common coordinate system

(the orientation colors become uniform) and self-organize into the desired shape, a typical

result for our second set of experiments. The letter ‘b’ in Figure 3.15 is the one shape that

Chapter 3: Shape Primitives 3.6 Results

77

does not fully align all of its MPs. It should also be noted that the image sequences are

not all taken at the same time intervals; thus explaining the varying degrees of mixing and

self-alignment in the sequences.

Chapter 3: Shape Primitives 3.6 Results

78

(a) frame=240 (b) frame=280 (c) frame=320 (d) frame=360 (e) frame=1000

Figure 3.11: MPs self-aligning and self-organizing into an ellipse.

(a) frame=0 (b) frame=230 (c) frame=300 (d) frame=400 (e) frame=710

Figure 3.12: MPs self-aligning and self-organizing into a diamond.

(a) frame=70 (b) frame=440 (c) frame=570 (d) frame=660 (e) frame=900

Figure 3.13: MPs self-aligning and self-organizing into an hourglass.

(a) frame=300 (b) frame=600 (c) frame=680 (d) frame=840 (e) frame=1000

Figure 3.14: MPs self-aligning and self-organizing into a cross.

Chapter 3: Shape Primitives 3.6 Results

79

(a) frame=140 (b) frame=330 (c) frame=540 (d) frame=810 (e) frame=1000

Figure 3.15: MPs self-aligning and self-organizing into a ‘b’.

(a) frame=290 (b) frame=700 (c) frame=780 (d) frame=960 (e) frame=1000

Figure 3.16: MPs self-aligning and self-organizing into an ‘S’.

(a) frame=350 (b) frame=620 (c) frame=700 (d) frame=970 (e) frame=1000

Figure 3.17: MPs self-aligning and self-organizing into a star.

(a) frame=420 (b) frame=580 (c) frame=720 (d) frame=900 (e) frame=1000

Figure 3.18: MPs self-aligning and self-organizing into a triangle.

Chapter 3: Shape Primitives 3.6 Results

80

3.6.3 Chemical Field Visualization

In order to better understanding the self-organization of the chemical fields of the MPs, we

visualize the spatial distribution of the chemical concentrations. Visualizations of the chem-

ical fields surrounding individual MPs are given in Figures 3.19, 3.20 and 3.21. Darker por-

tions of the field represent regions of higher chemical concentration and the red regions are

isoregions (regions where the chemical concentration have approximately the same value).

Figure 3.19 presents the “static” chemical fields of the MPs that self-organize into the star,

diamond, and letter ‘b’ shapes. While the star and diamond chemical functions do con-

tain time variables, the changing value of time over the aggregation simulations does not

significantly alter the form of these chemical fields. Figure 3.20 and 3.21 demonstrate how

the individual chemical fields of the ellipse and letter ‘S‘ MPs change as simulation time t

increases.

The ‘chemical’ fields emitted by the individual MPs accumulate in the environment. It

is this cumulative field that each MP senses and responds to by moving along its gradient.

Figures 3.22 to 3.25 illustrate how the MP cumulative fields self-organize during the aggre-

gation process. Red isoregions are drawn to further highlight the emerging structure of the

fields.

Figure 3.19: “Static” chemical fields emitted by the star, diamond and letter ‘b’ MPs.

Chapter 3: Shape Primitives 3.6 Results

81

Figure 3.20: Dynamic chemical field emitted by the ellipse MP.

Figure 3.21: Dynamic chemical field emitted by the letter ‘S’ MP.

Chapter 3: Shape Primitives 3.6 Results

82

(a) frame=10 (b) frame=250 (c) frame=450 (d) frame=570 (e) frame=960

Figure 3.22: Cumulative chemical field emitted by a set of MPs self-organizing into
an ellipse shape.

(a) frame=90 (b) frame=400 (c) frame=560 (d) frame=740 (e) frame=1000

Figure 3.23: Cumulative chemical field emitted by a set of MPs self-organizing into
an hourglass shape.

(a) frame=310 (b) frame=690 (c) frame=840 (d) frame=970 (e) frame=1000

Figure 3.24: Cumulative chemical field emitted by a set of MPs self-organizing into
a star shape.

(a) frame=370 (b) frame=520 (c) frame=690 (d) frame=840 (e) frame=970

Figure 3.25: Cumulative chemical field emitted by a set of MPs self-organizing into
a triangle.

Chapter 3: Shape Primitives 3.6 Results

83

3.7 Discussion

3.7.1 Generating Results

While the general procedure for discovering the chemical fields has been outlined in previous

sections, in practice the process of generating the field function for a specific shape can be

quite arduous. At this point in our work we are still discovering which shapes our approach

is capable of producing. In the process of attempting to discover field functions, parameters

for the approach itself were varied to find the ones that produced the desired result. Those

parameters include the probability of following the chemical gradient, the magnitude of

random movements, and the balance of mutation versus cross-over in the GP stage. Given

the exploratory nature of our work, we have experienced failures when trying to make

different target shapes. For example we failed to find field functions that produced a heart

shape and the letters O, T, U and Y.

Many times the GP process does fail to generate a proper target shape and is caught

in an undesirable local minimum configuration instead. For example, when attempting to

generate the letter ‘b’ shape, frequently the MPs form into a single blob or an hourglass

shape. One way to solve this problem is to introduce more randomness (or noise) into the

system. For the GP process we increased the probability of mutation, and for the MP ag-

gregate simulation we randomized the order of cell movement processing. The modifications

to the GP process introduced new equation segments into the individuals, i.e the chemical

field functions. Making the order in which cells are moved during the processing of a single

simulation time step increased the likelihood that a function would consistently produce a

particular shape. In other words, adding randomness to the aggregation simulations made

them more stable and predictable. This correlates with our previous cell sorting research

that showed that noise is necessary for producing highly ordered, layered cell structures

Chapter 3: Shape Primitives 3.7 Discussion

84

[37]. During the development of our approach we also found that we needed to improve the

sensitivity and accuracy of our fitness function, by squaring the ratio in Equation 3.8.

3.7.2 Robustness

During the aggregation process, each MP starts with a random position and possibly a

random orientation. In order to evaluate the reliability/robustness of our approach, 100

aggregation simulations were performed for the ellipse, diamond, hourglass, cross, letter ‘b’,

letter ‘S’, star and triangle shapes, each with different initial conditions. One set of exper-

iments uses MPs with fixed orientations but uniform random initial positions. The other

set of experiments uses MPs that self-align additionally with initial random orientations.

The outputs of these simulations were visually evaluated to compute a robustness statis-

tic, the percentage of the aggregation results that produces each desired final shape. The

robustness information is summarized in Table 3.2. It can be seen that only a few shapes,

e.g. ellipse, diamond, cross, letter ’S’ and the star, can be produced consistently, with the

ellipse and cross MPs being robust both for the fixed orientation and self-aligning MPs.

It is interesting to note that the robustness of the shape formation process significantly

decreases for some shapes when including self-alignment, e.g. for the ellipse, diamond and

letter ’S’. However for some shapes initialization with random orientation followed by local

alignment improves the robustness, e.g. for the star and triangle. Overall, these statistics

highlight the fact that self-organizing MPs do not always aggregate into the desired form.

Work described in later chapters present our efforts to control the shape formation process,

and therefore improve its robustness and reliability.

Chapter 3: Shape Primitives 3.7 Discussion

85

Table 3.2: Robustness of the aggregation simulations with fixed orientation MPs
and self-aligning MPs. Listed are the percentage of simulations out of 100 runs that
produced a desired shape for a variety of MPs.

Shapes ellipse diamond hourglass cross

Fixed-orientation MP 100% 99% 10% 100%

Self-aligning MP 87% 27% 4% 100%

Shapes letter ‘b’ letter ‘S’ star triangle

Fixed-orientation MP 9% 99% 50% 7%

Self-aligning MP 7% 18% 84% 39%

3.7.3 Dynamic Stability

Since simulation time t is included as a variable in the chemical field function, our approach

effectively evolves field functions that direct MPs to aggregate into the desired shape by a

certain time (1000 iterations in our experiments). We conducted tests to determine whether

the resulting aggregates are stable, unstable or periodic structures, i.e. do MPs reach their

desired shape and maintain it, do MPs attain their desired shape by 1000 iterations then

collapse into a another shape, or do they oscillate between two shapes. In our tests we

extended the total number of iterations to 1500. After iteration 1000, t was held constant;

thus fixing the structure of the individual chemical fields for the remainder of the simulation.

Since the probability of an MP following the chemical concentration gradient is a function

of simulation time as well, as in Equation 3.7, the probability of following the gradient

was set to 1.0 once the iterations exceeded 1000. MPs always followed the chemical field

gradient in the later stages of these tests.

The results of these tests for MPs that achieved their target shape at 1000 iterations

are summarized as the following. The ellipse, diamond and star aggregates always maintain

their target shape. The hourglass, letter ‘b’ and letter ‘S’ shapes keep their target shapes

approximately 50% of the time. The cross aggregates turn into a hexagonal form and the

Chapter 3: Shape Primitives 3.7 Discussion

86

triangle aggregates turn into a bow tie shape. These experiments suggest that the self-

organizing systems that form the ellipse, diamond and star shapes are stable after time

step 1000; while the hourglass, letter ‘b’ and letter ‘S’ MPs are semi-stable, while the cross

and triangle are unstable at least in terms of producing the desired shapes. Exploring and

understanding this complex dynamic behavior will be the focus of future work.

3.7.4 Running Time

A significant amount of computation is needed for the genetic process to produce the chem-

ical field function for a particular shape. Each 1000-time-step MP simulation requires

approximately 4-CPU to 30-CPU minutes on a 2.4 GHz Opteron processor, depending on

the complexity of the chemical field function. Initially the GP calculations were performed

on an 8-node cluster, and then later were migrated to a 64-core cluster. Since the overhead

of distributing the computation over the nodes is quite small compared to the simulation

times themselves, we found that we achieved nearly linear speed-ups in our distributed GP

system [5], with an approximately 64× speed-up on the 64-core cluster.

Given our computing cluster and the time required for each aggregation simulation,

each 100-individual generation requires approximately one hour of actual time to compute.

Since the GP process may produce the desired function on average by the 30th generation, a

successful run can derive a shape-specific field function in one to two days. In our experience

though, several of these day-long runs are needed to find the correct parameters to produce

the desired result. Of course, once we have the correct chemical field function only a small

amount of computation (approximately 15 CPU-minutes) is needed to simulate the desired

aggregation behavior.

Chapter 3: Shape Primitives 3.7 Discussion

87

3.8 Conclusion

We have presented a new approach to shape formation using self-organizing primitives whose

behaviors are based on cell biology. The key concept is that local interactions between

the 2D primitives, called morphogenetic primitives (MPs), direct them to aggregate into

a user-defined macroscopic shape. The interactions are based on the chemotaxis-inspired

aggregation movements exhibited by actual living cells. Here, cells emit a chemical into their

environment. Each cell responds by moving in the direction of the cumulative chemical field

gradient detected at its surface. MPs, though, do not completely mimic the behavior of

real cells. The chemical fields are explicitly defined as mathematical functions and are

derived via genetic programming. A fitness measure, based on the shape that emerges from

the aggregation process, directs the evolution of the function. We have implemented a

distributed GP system to speed up the evolution process. We have successfully applied this

method to evolve the interaction rules to form a number of simple shapes and have conducted

preliminary analysis of the overall approach. Our general shape formation primitives are

truly self-organizing, compared with previous works [72, 73, 108, 28]. The primitives do not

know their global position or contain a blueprint of the final shape they are going to form.

The primitives are not assigned a location in the final configuration. The primitives only

interact with neighboring agents, basing their actions on local and internal information.

Compared to previous work, our system has achieved a deeper level of self-organization.

While we are able to discover local interaction rules for a number of user-predefined

shapes, we learned from our repeatability tests that our system can not always consistently

produce the specified outcome. We aim to discover methods for making the self-organizing

shape formation robust. In Chapter 2, we are able to achieve a consistent sorted structure

by identifying the proper range for system parameters. Here we want to achieve robustness

Chapter 3: Shape Primitives 3.8 Conclusion

88

by not only changing parameter values of our system, by also studying and controlling the

shape evolution process of the primitives. For analysis purposes, we simplify the system

by eliminating the toroidal environment. We extend the size of the arena and initialize

primitives in a round disc at the center. The specific goal is to discover the properties

that consistently lead to a desired self-organizing shape formation. Furthermore, we can

utilize these properties to create certain simulation conditions that robustly produce the

aggregation of the desired shape.

Chapter 3: Shape Primitives 3.8 Conclusion

89

Chapter 4: Predicting Spatial Self-Organization

4.1 Introduction

We have developed a self-organization shape formation system for generating user-specified

macroscopic shapes and structures (Figure 4.1 and Chapter 3), based on chemotaxis-based

local interactions [10]. In some cases, we have observed that the morphogenetic primitives

(MP) do not spatially self-organize into a unique shape, but instead form two or more

stable final configurations. We aim to find a way to characterize the macroscopic behavior

of the MP swarm. Towards this end, we have discovered features, based on statistical

moments and their derivatives of the agents’ positions that can distinguish different final

configurations and that can be computed early in the swarm’s evolution to predict the final

shape of the self-organizing system. Analyzing these features with a Support Vector Machine

[24], a supervised machine learning technique, classifies the agent system, i.e. provides a

prediction for the system’s final configuration. The accurate prediction based on statistical

moments demonstrates that these features indeed capture the macroscopic structure of the

MP swarm, a capability that we will harness in the next chapter to control the swarm.

4.2 Related Work

Multi-agent approaches have been widely utilized to model self-organizing systems [78, 87,

104]. Our current work focuses on how to analyze and predict the outcome of such systems.

To date, a variety of methods have been used to analyze these systems. These methods

usually require identifying global variables [60] and/or deriving quantitative properties of

the whole system [97]. Differential equations also are used to capture state transitions of

90

Figure 4.1: MPs self-organizing into a pinwheel shape.

a system [21, 42]. These methods require identifying global variables and the relationships

between them, which can be obscure and quite complex.

Various analytical methods have been used to predict the outcomes of self-organizing

systems. Lerman et al. showed that even though the behavior of an individual robot is

stochastic, the collective behavior of a robot swarm is often predictable with a simple

probability description [65].Time series analysis has been applied to predict self-organizing

maps [89]. The analysis aims to predict long-term trends, rather than predicting specific

final states. Hamann presents a data-driven, iterative process, based on a swarm urn model,

Markov chains and abductive reasoning, for determining, testing, and refining hypotheses

about how self-organizing decision-making system operate [53]. The process is able to

identify influential feedback loops and important subsections of the configuration space in

these types of systems.

Chapter 4: Predicting Self-Organization 4.2 Related Work

91

Machine learning algorithms have also been applied to self-organizing systems. An un-

supervised learning algorithm is utilized to construct a self-organizing map for information

retrieval [66]. Support Vector Machines have been used together with self-organizing maps

for shape-based image retrieval [111].

Statistical moments are measures that quantify the shape of distributions. In statistics,

the method of moments is used to estimate population parameters [112]. In our work, we

gain insights from the moments of the coordinates of moving agents in a 2D arena and

predict the final outcome of the system based on the moment information.

4.3 System Modifications

To more easily analyze the self-organizing shape formation process, we first need to simplify

the above system. The original local field function is hard to analyze because time t is

also a variable in the function, which significantly increases the complexity of the system.

Removing time t from the field function should lead to MPs that have long-term convergent,

and stable configurations. In previous experiments, we have observed that interesting shapes

can be obtained by field functions that are only functions of d and θ or even only d.

Therefore, we simplified the local function to be f = f(d, θ) for our current experiments in

order to facilitate the study of the self-organization process of primitive aggregation.

We also modified the arena that shape primitives move in. We eliminated the toroidal

environment used in previous experiments and now prevent cells from moving across the

arena boundary. We initialize the primitives inside a circle in the middle of the arena, with

a diameter that is the same size as the width/ height of the previous environment.

Chapter 4: Predicting Self-Organization 4.3 System Modifications

92

4.4 Moment Analysis

In order to predict the final outcome of a self-organizing shape formation simulation, we

first extract features that capture the spatial distribution of the MPs. Moments provide

a quantitative way to describe a distribution. Since MPs are defined as small discs, we

use the center of each disc to represent each MP’s location. We therefore can simplify the

collection of MP locations as a set of 2D points, and apply moment analysis to this set over

the duration of the MP simulation.

4.4.1 Moment Calculation

We calculate the mean (first moment), variance (second central moment), skewness (third

central moment) and kurtosis (fourth central moment) from the x and y coordinates of

the MP centers. We analyze the locations Xi of all points (MPs) as a whole, rather than

tracking the location and movement of each individual point. The population size of the

agents is denoted as n, (n = 500), and the formulas of the four moments M1 to M4 are

given in Equations 4.1 to 4.4,

M1 =
1

n

n∑
i=1

Xi, (4.1)

M2 =
1

n

n∑
i=1

(Xi −M1)2, (4.2)

M3 = [
1

n

n∑
i=1

(Xi −M1)3]/(M2)3/2, (4.3)

M4 = [
1

n

n∑
i=1

(Xi −M1)4]/(M2)2. (4.4)

These statistical moments provide quantitative information about the shape of his-

tograms/ distributions. When computed for the x and y coordinates of the MPs, these

moments capture the symmetry and asymmetry of the spatial distribution of the whole

Chapter 4: Predicting Self-Organization 4.4 Moment Analysis

93

population. Since the x and y coordinates of the points change over time, so do the four

moments of the distribution of x and y values. The change of the moments as a function of

simulation time also provides insight into the dynamic nature and structure of a particular

MP simulation.

We define the time derivative of the moments as the slope of a linear interpolating

function of consecutive moment values. A series of values are obtained by sampling the

simulation time with a fixed interval τ . At each simulation time t, the four moments Mi(t)

(i = 1 to 4) of the overall distribution are calculated. For each moment Mi, we consider an

interval of 4τ which containing 5 samples, that is, Mi(t− 2τ), Mi(t− τ), Mi(t), Mi(t+ τ)

and Mi(t + 2τ). A straight line is fit to the five points with a least squares method. For

each moment Mi at time t, we find the ki and bi that minimize Equation 4.5,

min

2∑
j=−2

|ki · (t+ jτ) + bi −Mi(t+ jτ)|2. (4.5)

The slope ki of the fitted line is then used as an approximation of the time derivative

of Mi(t)(i = 1 to 4).

By calculating the moments and their time derivatives for both the x and y coordinates

of the point set, at a given time t, we obtain a 16-dimensional vector to represent the

distribution,

[Mx1(t),My1(t),Mx2(t),My2(t),

Mx3(t),My3(t),Mx4(t),My4(t),

kx1(t), ky1(t), kx2(t), ky2(t),

kx3(t), ky3(t), kx4(t), ky4(t)]

Chapter 4: Predicting Self-Organization 4.4 Moment Analysis

94

Our simulations consist of (n = 500) 2D points and therefore have a configuration space

of dimension 2n. By distilling an MP spatial distribution down to this feature vector, we

reduce the dimensionality of the simulation from 1000 to 16.

Given the sensitivity of non-linear dynamical systems to initial conditions [109], it

makes it extremely difficult, if not impossible, to predict the outcome of our complex,

self-organizing system from its initial, random spatial configuration. We therefore attempt

to predict the final spatial configuration at an early stage of the aggregation, usually before

it is visually evident what shape will emerge from the process. We have found that applying

our analysis at a time in the simulation that is a small percentage of the total time needed

for the final aggregated shape to form (e.g. 5% to 10%) produces acceptable results (81%

to 91% accuracy).

4.4.2 Using Support Vector Machines

We consider prediction of the bifurcating outcomes as a classification problem and utilize

support vector machines (SVMs) [24] to solve it. An SVM applies kernel methods to labeled

training data and transforms the data into a high dimensional space. It computes the

optimal separating hyperplane, which is the one producing the largest margin between the

two classes. Doing so produces a trained SVM model with kernel and constraint parameters.

Classification is performed by mapping new data into the same high dimensional space and

determining on which side of the hyperplane the new data lies.

Since our data is not linearly separable, we apply a Radial Basis Function (RBF) kernel

in our SVM. We use LIBSVM [22] to perform SVM training and testing. To train the SVM,

we employ a leave-one-out cross-validation method. We use grid search to find the best cost

parameter C for the SVM and γ parameter for the RBF kernel. Once the optimal C and

γ values were identified, accuracy statistics were gathered from numerous simulations, each

Chapter 4: Predicting Self-Organization 4.4 Moment Analysis

95

Table 4.1: Dataset information and prediction accuracies for bifurcating shapes at
10% (5% for ellipse) of simulation time.

Quarter-moon

Total Time Prediction Time Positive Instances Negative Instances Kernel

35,000 3,500 100 100 RBF

Cost (C) gamma (γ) Accuracy Sensitivity Specificity

512 0.03125 91.5% 92.0% 91.0%

Ellipse

Total Time Prediction Time Positive Instances Negative Instances Kernel

10,000 500 100 100 RBF

Cost (C) gamma (γ) Accuracy Sensitivity Specificity

2048 4.883e-04 89.0% 89.0% 89.0%

Four Discs

Total Time Prediction Time Positive Instances Negative Instances Kernel

15,000 1,500 100 100 RBF

Cost (C) gamma (γ) Accuracy Sensitivity Specificity

512 1.221e-04 83.0% 84.0% 82.0%

Parallel Line Segments

Total Time Prediction Time Positive Instances Negative Instances Kernel

10,000 1,000 508 100 RBF

Cost (C) gamma (γ) Accuracy Sensitivity Specificity

4 0.125 (80.9± 2.5)% (80.4± 3.5)% (81.4± 2.6)%

utilizing different random initial conditions.

To obtain training data for a specific target shape, we run a certain number (200) of MP

simulations starting with different, random spatial configurations. Each simulation consists

of a fixed number of time steps (10, 000 to 35, 000), depending on how long it takes for the

target shape to form. We save the spatial distribution of the agents every 100 steps of the

simulation, that is, τ = 100. Each simulation will produce an aggregated structure at the

end of the simulation, and we label all final structures with one of two categories.

Chapter 4: Predicting Self-Organization 4.5 Results

96

4.5 Results

We have applied the proposed prediction method to a number of bifurcating shape evo-

lutions. The target shapes are a quarter-moon, an ellipse, a set of four discs, and a set

of two parallel line segments. Once the SVM parameters with the best overall accuracy

are determined through grid search and leave-one-out cross-validation, we calculate overall

accuracy, sensitivity and specificity for each example. These results are summarized, along

with the dataset descriptions and SVM parameters, in Table 4.1. The quarter-moon, ellipse

and four-discs datasets each contains 200 simulations, with 100 belonging to each class. The

parallel line segments dataset is unbalanced with a ratio of approximately 5 : 1, with 508

instances belonging to one class and 100 belonging to the other.

Step 0 Step 1000 Step 3500 Step 10000 Step 35000

Figure 4.2: Shape evolution of the quarter-moon.

The quarter-moon dataset contains 100 left-facing and 100 right-facing structures. A

typical shape evolution for this dataset is shown in Figure 4.2. The simulation reaches a

stable state by 35, 000 simulation steps. We extract feature vectors in the form of Vector 4.6.

At step 3, 500 (10% of the total simulation time) we are able to predict the left-facing or

right-facing outcome with an overall accuracy of 91.5%.

The ellipse dataset contains 100 single ellipses and 100 non-single ellipses. Figure 4.3

Chapter 4: Predicting Self-Organization 4.5 Results

97

Step 0 Step 200 Step 500 Step 2000 Step 10000

Figure 4.3: Shape evolution of the ellipse.

demonstrates its typical shape evolution. The simulation reaches a stable state by 10, 000

steps. At 500 steps (5% of simulation time) we are able to predict whether the simulation

will produce a single ellipse or not with an overall accuracy of 89%.

Step 0 Step 500 Step 1500 Step 3500 Step 15000

Figure 4.4: Shape evolution of the discs structure.

The four-discs dataset contains 100 four discs structures and 100 structures of five discs,

with a typical shape evolution shown in Figure 4.4. The simulation reaches a stable state

by 15, 000 steps. At 1, 500 steps (10% of simulation time) we are able to predict whether

the simulation will form four discs or not with an overall accuracy of 83%.

The parallel line dataset contains 508 instances of two vertical parallel line segments

Chapter 4: Predicting Self-Organization 4.5 Results

98

Step 0 Step 500 Step 1000 Step 5000 Step 10000

Figure 4.5: Shape evolution of the line segments structure.

and 100 instances of either “Y-shape” structures or one vertical line, as seen in Figure 4.5.

The simulation reaches a stable state by 10, 000 steps. We calculate the prediction of the

final configuration at step 1, 000. Since this is an unbalanced dataset, we under-sample the

majority set. We randomly choose 100 out of the 508 two-line-segments instances and merge

them with the minority set. Leave-one-out cross validation is then performed on the newly

constructed balanced dataset. We achieve an average overall accuracy of 80.9 ± 2.5% over

100 randomly constructed balanced datasets when predicting the formation of two vertical

lines.

Since the overall line-segment results are produced via averaging the results from nu-

merous randomly generated partitions, we include a standard deviation with the average.

The other examples have balanced datasets, and therefore leave-one-out cross-validation

produces a unique partitioning and no deviations.

Chapter 4: Predicting Self-Organization 4.5 Results

99

4.6 Conclusion

Based on the statistical moments of the agents’ positions and the time derivatives of these

moments, we are able to predict the final outcome of a spatial self-organization process at 5%

or 10% percent of the simulation time with an overall accuracy of 81% to 91%. The accurate

prediction based on statistical moments demonstrates that the moments successfully capture

the macroscopic dynamic structure of the MP swarm. In the next chapter we show that these

descriptive macroscopic features can be used to control or influence the agents’ interaction

so that they consistently form into one stable configuration, instead of bifurcating into two

or more final configurations.

In this chapter, we use a global calculation of the statistical moments to analyze the

agent swarm. Further work will explore methods for calculating statistical moments at the

local level. This may require building a unified coordinate system via consensus.

Chapter 4: Predicting Self-Organization 4.6 Conclusion

100

Chapter 5: Directing Spatial Self-Organization

5.1 Introduction

We have observed in our previously developed chemotaxis-based self-organizing shape for-

mation system (Figure 5.1 and Chapter 3), the morphogenetic primitives (MP) do not

always spatially self-organize into a unique shape, but instead may form two or more sta-

ble final configurations. Given this sometimes inconsistent behavior, it would be useful

to control the outcome of these bifurcating spatial self-organization processes. This would

allow us to guarantee that all of our MP simulations produce a single, desired shape. In

Chapter 4, we analyzed whole swarm populations at a global level in search of macroscopic,

distinguishing attributes. This analysis identified features, based on statistical moments

of the agents’ positions, that have significantly different values for different outcomes of a

swarm aggregation. We also discovered that these statistical moments can be used to ac-

curately predict the outcome of the self-organization process at an early stage of the shape

aggregation [9]. Given these differentiating moments, we aim to employ them to direct the

outcome of our self-organizing system via generating biased, random initial conditions.

Through our study of the dynamics of a swarm’s aggregation process we noted the

connection between initial conditions and the final shape configuration of the swarm. See

Chapter 2.5.3. Given our experience with changing the initial conditions of the cell sorting

simulations and the predictive capabilities of an MP swarm’s statistical moments, we hy-

pothesized that biased, random initial conditions that meet specified constraints, i.e. have

well-defined statistical properties, could consistently yield simulations with a unique final

outcome. For those agent interactions that ultimately produce bifurcating/multiple final

101

Figure 5.1: Morphogenetic Primitives self-organizing into a star shape.

configurations, we have identified for each shape, the most distinguishing macroscopic sta-

tistical moment of the configuration (final shape). It is then possible to generate random

distributions of MPs that have specific statistical moments. Our work empirically shows

that for bifurcating shapes one final outcome can be generated with very high probability by

enforcing a constraint on the value of a single moment when generating the swarm’s initial

conditions. Given this feature of our system, we are able to control the final outcome of the

simulation by simply thresholding the value of a statistical moment for a particular starting

distribution, i.e., we constrain the initial conditions to have specified statistical properties.

5.2 Related Work

Building upon the references cited in the previous chapter for analyzing self-organizing

systems, a number of efforts have attempted to control these types of systems. Pfeifer

et al. point out that biology and self-organization can assist in the design of autonomous

Chapter 5: Directing Self-Organization 5.2 Related Work

102

robots [77]. Our current work takes a bio-inspired multi-agent approach to spatial self-

organization and focuses on influencing or directing the outcome of such systems.

Schmickl et al. define collective perception in a robot swarm as a single map obtained by

joining multiple individual robot perceptions [83]. They present two approaches to collective

perception that only require individual robots with limited abilities of local perceptions. Liu

et al. present an adaptation mechanism to adjust the ratio of foragers to resters in a swarm

of foraging robots with the goal of maximizing the swarm’s net energy income [67]. Shen et

al. propose a Digital Hormone Model for controlling robot swarms that are based on local

communication [88]. This model considers the topological structure of the organization and

does not require a unique identifier for each individual.

In our work, based on insights about the moments of the coordinates of moving agents

in a 2D arena, we generate biased initial random conditions that control the final outcome

of a self-organizing shape formation process [4].

5.3 Biased Initial Conditions

In order to control the final outcome of a self-organizing shape formation simulation, we

first extract features that capture the spatial distribution of the MPs. Moments provide

a quantitative way to describe a distribution. Since MPs are defined as small discs, we

use the center of each disc to represent each MP’s location. We therefore can simplify the

collection of MP locations as a set of 2D points, and apply moment analysis to this set over

the duration of the MP simulation.

5.3.1 Statistical Moments

We calculate the mean (first moment), variance (second central moment), skewness (third

central moment) and kurtosis (fourth central moment) from the x and y coordinates of the

Chapter 5: Directing Self-Organization 5.3 Biased Initial Conditions

103

MP centers. The population size of the agents is denoted as n, (n = 500), and the formulas

for the four moments M1 to M4 are given in Equations 4.1 to 4.4,

Step 0 Step 1000 Step 3500 Step 10000 Step 35000

Figure 5.2: Shape aggregation of the quarter-moon MPs.

One of our aggregations, which produces what we call the quarter-moon shape, provides

an example of the moment analysis. Of the 200 simulations starting with a uniform random,

unbiased initial condition, 100 produce left-facing structures and 100 produce right-facing

structures. Figure 5.2 shows a typical swarm aggregation for this shape. The four moments

of both x and y coordinates are calculated over all 35, 000 simulation steps. Additionally

the mean and standard deviation of each statistical moment is calculated for all the simu-

lations runs in the two categories, i.e. left-facing and right-facing, over the simulation time

steps. Plotting the mean and the mean ± the standard deviation of the moments over time

immediately highlights the moments which are the most differentiating and may be used

to identify specific shapes. For the quarter-moon example the third x moment (skewness)

is the one with the greatest separation of values for the two possible outcomes, as seen

in Figure 5.3. The solid lines are the mean of the skewness of the x coordinate and the

dotted lines are mean ± standard deviation. The red curves are produced from structures

that are right-facing and who follow the path in the top of Figure 5.2. The blue curves

Chapter 5: Directing Self-Organization 5.3 Biased Initial Conditions

104

0 5000 10000 15000 20000 25000 30000 35000
Simulation Time

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

T
h
ir

d
 x

 M
o
m

e
n
t

right-facing color red ---- left-facing color blue

Figure 5.3: Skewness of the x coordinate of the quarter-moon shapes over time,
beginning with unbiased, random initial conditions.

are produced from the left-facing structures, with a typical aggregation presented at the

bottom of Figure 5.2.

By analyzing the time series in Figure 5.3, we see that the skewness of the x coordinates

of the two classes starts at about the same value, approximately −0.05 to 0.05, at time

step 0. The values should be near zero, since all simulations begin with uniform random

configurations. The skewness of the two classes first separates by increasing or decreasing,

followed by a zero crossing and then a reversed trend appears until they reach their final

states at step 35, 000. Observing the values for the red and blue curves over all simulation

time steps, we can identify three regions in the plot: a region occupied by blue curves only,

a region occupied by red curves only and an overlapping region of the red and blue curves.

To be specific, considering the values of skewness in Figure 5.3 (by projecting the curves

Chapter 5: Directing Self-Organization 5.3 Biased Initial Conditions

105

into the y axis), the range [−0.192,−0.154] is covered by blue curves only; [0.145, 0.211] is

covered by red curves only and [−0.154, 0.145] is covered by both colors.

5.3.2 Generating Constrained Biased Distributions

Once the most significant distinguishing moment for a shape is identified, the information

is utilized to direct the shape aggregation by imposing constraints on this moment in the

initial conditions. We assume that the MPs’ x and y coordinates are independent, and

therefore create two probability density functions, each representing the x and y coordinate.

One probability density function is created for the constrained coordinate and the other

coordinate is considered to be uniformly random. Samples are drawn independently from

the two distributions to produce a single (x, y) location.

This approach generates random distributions, i.e. 2D random initial configurations for

the shape formation simulation, that meet a constraint on a particular moment in the x or

y coordinate. We have found that constraining one of the eight moments (mean, variance,

skewness and kurtosis for x and y) is sufficient for producing satisfactory results. Constrain-

ing multiple moments does not significantly improve the outcomes. Once one significant

moment of a distribution and its threshold value have been identified, the remaining three

moments for that spatial coordinate (x or y) may be set to values derived from a symmet-

ric normal distribution. These values are mean = 500 (the center of our computational

arena), variance = mean2 (250, 000, in order to approximate a uniform random distribu-

tion), skewness = 0 (to make the distribution symmetric), and kurtosis = 0 (to make the

distribution normal). Once the four moments for one of the coordinates have been specified,

a probability density function (PDF) with those moments is defined. The values for the

other coordinate are generated from a uniform random distribution.

For the constrained dimension we create a Gram-Charlier expansion of the normal distri-

Chapter 5: Directing Self-Organization 5.3 Biased Initial Conditions

106

bution [85] with specified moments. This Gaussian expanded probability density function is

then discretized with 100,000 samples with values falling within the range of 0 to 1000 (the

range of the computational arena). Slice sampling [74], a Markov chain sampling method,

is then utilized to draw 500 samples from this discretized distribution. Theoretically, the

specified PDF can be sampled to produce a distribution that has the same moments as

the PDF. Our experience has shown that the sample size needs to be quite large (on the

order of 1 million) for this to be true. For our sample size of 500 (the number of MPs in

an aggregation simulation) and heavily biased PDFs, the resulting moments of the finite

sample set do not necessarily match the ones desired for a particular shape.

Since the distribution generation process cannot guarantee that a sampled distribution

will meet the required moment constraints, the four moments of the generated distributions

for the constrained coordinate are computed to determine if the constraint is actually met.

If the value of the significant moment is not above or below the specified threshold, the

sampled distribution is rejected. If the constraint is met, the distribution is accepted as

the initial conditions for the simulation computation. We have found, when generating

initial conditions for a computational experiment, that in the worst case we have to gener-

ate approximately 400 sampled distributions in order to obtain 100 that meet the needed

constraint. In the best case, the first 100 distributions meet the constraint. Typical val-

ues are closer to 150 generated distributions needed to obtain 100 acceptable biased initial

conditions.

In general the threshold value for the constrained moment is defined as the mean value

of the non-overlapping moment range for a particular shape. For example for the quarter-

moon shape in Figure 5.2, we identified two non-overlapping regions of the third moment

in the x dimension. See Figure 5.3. The region covered only by red curves (for right-facing

Chapter 5: Directing Self-Organization 5.3 Biased Initial Conditions

107

shapes) is [0.145, 0.211]. The mean value of this region is 0.178. In order to consistently

produce right-facing quarter-moon shapes, we create 2D distributions with a constraint on

the skewness in the x coordinate, and only accept distributions with a third moment greater

than 0.178.

Since our agents are not points, but in fact are discs with a fixed radius, we maintain a

distance of 2R (where R is the radius of a disc) between sample points, to ensure that the

MPs do not overlap. Therefore, if an (x, y) pair is generated that is less than 2R distance

to a previously generated location, it is rejected and another (x, y) pair is calculated. This

process continues until a sufficient number of MP locations are generated for the initial

conditions.

5.4 Results

(a) (b) (c) (d)

Figure 5.4: (top row) Biased initial conditions ((a) x skewness = -0.268, (b) y kurtosis
= 2.150, (c) x variance = 9,596, (d) x kurtosis = 1.88) that robustly evolve (bottom
row) into (a) a right-facing quarter-moon, (b) a single ellipse, (c) three discs and (d)
two line segments.

We have applied the proposed method to generate initial biased configurations for a

Chapter 5: Directing Self-Organization 5.4 Results

108

number of bifurcating shape aggregations. These shapes include a quarter-moon, an ellipse,

a set of discs, and a set of two parallel line segments. Given biased initial conditions the

aggregation simulations produce one final outcome, in a large majority of, if not all, cases.

Moreover, by thresholding the moment constraints on the biased initial conditions it is

possible to control which shape is produced by a simulation. Figure 5.4 (top row) shows

biased initial conditions for a number of shape aggregations created with this method. The

bottom row illustrates the final outcome of each shape simulation that is produced from

the associated biased starting configuration.

In order to identify the significant, distinguishing moments for each shape, shape simu-

lations (usually several hundred) with unbiased initial conditions are first performed. The

shapes of the final outcomes are visually inspected and placed in categories. For each final

shape, the mean and standard deviation of the statistical moments of the evolving sim-

ulation runs for that shape are computed over the entire shape aggregation process. For

simulations starting with uniform random, unbiased initial conditions, the final outcomes

of the quarter-moon, ellipse and discs shapes evenly split into two categories, with roughly

50% of the final outcomes belonging to each class. The outcomes of the parallel line shapes

are unbalanced, with 83.6% belonging to the majority class (two lines) and 16.4% belonging

to the minority class (one line or ‘Y’ shape). These results, as well as the details that follow

in the remainder of the section, are summarized in Table 5.1.

Chapter 5: Directing Self-Organization 5.4 Results

109

Table 5.1: Table summarizing results generated with unbiased and biased initial con-
ditions.

Quarter-moon

Shapes Unbiased Percentage Thresholded Moment Biased Percentage

left-facing 50% Skewnessx ≥ 0.178 94%

right-facing 50% Skewnessx ≤ −0.178 91%

Ellipse

Shapes Unbiased Percentage Thresholded Moment Biased Percentage

perfect ellipse 50% Kurtosisy ≥ 2.11 100%

two ellipses 50% 0%

Multiple Discs

Shapes Unbiased Percentage Thresholded Moment Biased Percentage

three discs 0% V ariancex ≤ 10, 270 100%

four discs 50% 0%

five discs 50% 0%

Shapes Unbiased Percentage Thresholded Moment Biased Percentage

three discs 0% 4%

four discs 50% Kurtosisx ≤ 2.09 75%

five discs 50% 21%

Parallel Line Segments

Shapes Unbiased Percentage Thresholded Moment Biased Percentage

two lines 83.6% Kurtosisx ≤ 1.90 100%

one line, “Y” shape 16.4% Kurtosisx ≥ 2.29 100%

Chapter 5: Directing Self-Organization 5.4 Results

110

5.4.1 Quarter-moon Shape

A typical aggregation for the quarter-moon shape is shown in Figure 5.2. The simulation

reaches a stable state by 35, 000 simulation steps. We identified skewness in the x coordinate

to be the significant macroscopic feature for this shape. See Figure 5.3 for its evolution over

the course of the aggregation. Two sets of biased initial conditions (each with 100 examples)

were generated with constrained skewness values in the x coordinate, with the thresholds set

as greater than 0.178 (mean of the red-only region) and less than −0.178 (a symmetric value

slightly less than the mean of the blue-only region). Since the distributions are generated

stochastically, they do not have the exact targeted skewness value. So our acceptance test is

based on an inequality. This generates 100 biased initial conditions whose third x moment

is above 0.178 and 100 biased initial conditions whose third x moment is below −0.178.

We performed simulations with the quarter-moon interaction function for these 200 biased

initial conditions. Of the 100 initial conditions with a thresholded third x moment below

−0.178, 91% of the final outcomes are right-facing structures, 7% are left-facing and 2%

produce a diagonal shape. Of the 100 initial conditions with a thresholded third x moment

above 0.178, 94% are left-facing, 5% are right-facing and 1% are diagonal. Figures 5.5

and 5.6 illustrate the skewness of the x coordinates of simulations beginning with biased,

random initial conditions.

Chapter 5: Directing Self-Organization 5.4 Results

111

0 5000 10000 15000 20000 25000 30000 35000
Simulation Time

0.4

0.3

0.2

0.1

0.0

0.1

0.2

T
h
ir

d
 x

 M
o
m

e
n
t

right-facing color red ---- other color blue

Figure 5.5: Skewness of the x coordinate of the quarter-moon shapes over time,
beginning with biased, random initial conditions with skewness less than −0.178.

0 5000 10000 15000 20000 25000 30000 35000
Simulation Time

0.2

0.1

0.0

0.1

0.2

0.3

0.4

T
h
ir

d
 x

 M
o
m

e
n
t

left-facing color blue ---- other color red

Figure 5.6: Skewness of the x coordinate of the quarter-moon shapes over time,
beginning with biased, random initial conditions with skewness greater than 0.178.

Chapter 5: Directing Self-Organization 5.4 Results

112

5.4.2 Ellipse Shape

A typical aggregation for the ellipse shape is shown in Figure 5.7, with half of the unbiased

initial conditions producing a single “perfect” ellipse, with the other half producing two

ellipses or a deformed “blob”. The simulation reaches a stable state by 10, 000 steps. We

identified kurtosis in the y direction to be the significant macroscopic feature for this shape.

See Figure 5.8. 100 simulations were performed with initial conditions that had their y

coordinates’ kurtosis thresholded to be above 2.11 (the mean of the blue only region). Given

these biased initial conditions all simulation (100%) produced a perfect single ellipse by step

10, 000. Figure 5.9 illustrates the kurtosis of the y coordinates of simulations beginning with

biased, random initial conditions.

Step 0 Step 200 Step 500 Step 2000 Step 10000

Figure 5.7: Shape aggregation of the ellipse MPs.

Chapter 5: Directing Self-Organization 5.4 Results

113

0 2000 4000 6000 8000 10000
Simulation Time

1.2

1.4

1.6

1.8

2.0

2.2

Fo
u
rt

h
 y

 M
o
m

e
n
t

two-ellipse color red ---- one-ellipse color blue

Figure 5.8: Kurtosis of the y coordinate of the ellipse shapes over time, beginning
with unbiased, random initial conditions.

0 2000 4000 6000 8000 10000
Simulation Time

1.8

2.0

2.2

2.4

2.6

2.8

Fo
u
rt

h
 y

 M
o
m

e
n
t

one-ellipse color blue

Figure 5.9: Kurtosis of the y coordinate of the ellipse shapes over time, beginning
with biased, random initial conditions with kurtosis greater than 2.11.

Chapter 5: Directing Self-Organization 5.4 Results

114

5.4.3 Discs Shape

The discs dataset, when run with 200 unbiased initial conditions, produces 100 four discs

structures and 100 structures of five or more discs, with a typical shape aggregation shown

in Figure 5.10. The simulation reaches a stable state by 15, 000 steps. We identified variance

in the x direction to be the significant macroscopic feature for this shape. See Figure 5.11.

In our experiments as the variance of the initial conditions was lowered, we found that

we could generate a new shape (one that did not appear with unbiased initial conditions),

that contained only three discs. Thresholding the x variance of the initial conditions to

be less than 10,270 would always (100%) produce a 3-disc result. A typical 3-disc shape

is presented in Figure 5.4(c). We were unable to consistently generate a 4-disc result for

most simulations by thresholding the variance. Thresholding the x kurtosis to be less than

2.09 did lead to an increased number of 4-disc results (75%), which we deemed as less than

consistent or robust with 21% 5-disc structures and 4% 3-disc structures. Figures 5.12

and 5.13 illustrates the variance of the y coordinates of simulations beginning with biased,

random initial conditions.

Step 0 Step 500 Step 1500 Step 3500 Step 15000

Figure 5.10: Shape aggregation of the discs MPs.

Chapter 5: Directing Self-Organization 5.4 Results

115

0 2000 4000 6000 8000 10000 12000 14000
Simulation Time

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

S
e
co

n
d
 x

 M
o
m

e
n
t

non-4-disc color red ---- 4-disc color blue

Figure 5.11: Variance of the x coordinate of the discs shapes over time, beginning
with unbiased, random initial conditions.

0 2000 4000 6000 8000 10000 12000 14000
Simulation Time

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

S
e
co

n
d
 x

 M
o
m

e
n
t

3-disc color green

Figure 5.12: Variance of the x coordinate of the discs shapes over time, beginning
with biased, random initial conditions with variance less than 10, 270.

Chapter 5: Directing Self-Organization 5.4 Results

116

0 2000 4000 6000 8000 10000 12000 14000
Simulation Time

2000

4000

6000

8000

10000

12000

14000

16000

S
e
co

n
d
 x

 M
o
m

e
n
t

5-disc color red --- 4-disc color blue --- 3-disc color green

Figure 5.13: Variance of the x coordinate of the discs shapes over time, beginning
with biased, random initial conditions with kurtosis less than 2.09.

5.4.4 Parallel Line Shape

The parallel line dataset, when run with unbiased initial conditions, contains 508 instances

of two vertical parallel line segments (83.6%) and 100 instances of either a “Y-shape” struc-

ture or one vertical line (16.4%), as seen in Figure 5.14. The simulation reaches a stable

state by 10, 000 steps. We identified kurtosis in the x coordinate to be the significant macro-

scopic feature for the shape. See Figure 5.15. 100 simulations were performed with initial

conditions that had their x coordinates’ kurtosis thresholded to be below 1.90. Given these

biased initial conditions all simulation (100%) produced the two line structure. 100 simu-

lations were then performed with initial conditions that had their x coordinates’ kurtosis

thresholded to be above 2.29. These biased conditions produced results that consistently

(100%) created the minority class structure of a single line. For this example the x kurtosis

Chapter 5: Directing Self-Organization 5.4 Results

117

threshold values were found experimentally. Figures 5.16 and 5.17 illustrates the kurtosis

of the x coordinates of simulations beginning with biased, random initial conditions.

Step 0 Step 500 Step 1000 Step 5000 Step 10000

Figure 5.14: Shape aggregation of the line segment MPs.

0 2000 4000 6000 8000 10000
Simulation Time

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fo
u
rt

h
 x

 M
o
m

e
n
t

other color red ---- two-line color blue

Figure 5.15: Kurtosis of the x coordinate of the line segment shapes over time,
beginning with unbiased, random initial conditions.

Chapter 5: Directing Self-Organization 5.4 Results

118

0 2000 4000 6000 8000 10000
Simulation Time

0

5

10

15

20

25

30

35

Fo
u
rt

h
 x

 M
o
m

e
n
t

one-line color red

Figure 5.16: Kurtosis of the x coordinate of the line segment shapes over time,
beginning with biased, random initial conditions with kurtosis greater than 2.29.

0 2000 4000 6000 8000 10000
Simulation Time

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Fo
u
rt

h
 x

 M
o
m

e
n
t

two-line color blue

Figure 5.17: Kurtosis of the x coordinate of the line segment shapes over time,
beginning with biased, random initial conditions with variance less than 1.90.

Chapter 5: Directing Self-Organization 5.4 Results

119

5.5 Conclusion

We have previously developed an agent-based self-organizing shape formation system. The

agents perform identical behaviors based on sensing local information. Genetic program-

ming may be used to discover local interaction rules that lead the agents to self-organize

into a number of shapes. However, since the agents are initially randomly placed in the

environment and they stochastically follow prescribed rules, the aggregation simulations do

not always produce the same final results. We have investigated the influence of biased

initial conditions on controlling the final outcomes of our system.

By analyzing the statistical moments of the agents’ positions over the entire shape ag-

gregation, we have identified significant, distinguishing moment features, and utilize them

as constraints on simulation initial conditions for a number of bifurcating shapes. Biased

initial conditions may be generated that meet these moment constraints, and the shape ag-

gregations produced from them result in different shape outcomes. In some of our examples

we can completely control the result of the self-organization process. In other cases we can

increase the likelihood of producing a desired configuration. In general, our work shows

that bifurcating shape aggregations may be directed toward producing specific shapes by

simply altering their initial conditions. It demonstrates that macroscopic features may be

derived from a low-level self-organization process and used to control the overall process.

As in Chapter 4, we calculate statistical moments at a global level. Furthermore, we

require a global evaluation of the generated biased initial conditions. Future work will

focus on eliminating global calculation and evaluation by developing a consensus coordinate

system and by perturbing the agents’ positions at a local level.

Chapter 5: Directing Self-Organization 5.5 Conclusion

120

Chapter 6: Conclusion

We have described two approaches to spatial self-organization. Both approaches consist of

primitives that utilize only local information. The interactions between the primitives are

finite and are based on a chemotaxis paradigm. One is a self-sorting system consisting of

a mixture of two types of agents. This system is an extension of a general cell aggregation

simulation system. Given parameter values in a certain range, the system is able to con-

sistently produce a sorted structure with one kind of cell in the center and another kind

surrounding the core. The system is robust in producing the desired result, starting from

many different random configurations. However, the approach is only capable of producing

one type of spatial structure.

In the second effort we developed a more general shape formation system based on

locally interacting shape primitives. The local interactions are defined by finite potential

field functions that are evolved by an evolutionary algorithm. Given a user specified target

shape, the genetic programming process automatically evolves a local field function that

directs a swarm of agents to produce the shape. However, this process is not robust. Since

all simulations start with initial random configurations, even given the same local potential

field function, not all aggregation simulations can generate the desired final structure.

By analyzing the statistical moments of the agents’ positions over the entire aggregation

process, we have identified significant, distinguishing shape features. With these features,

we are able to predict the final outcome of a spatial self-organization process at 5% or

10% percent of the simulation time with an overall accuracy of 81% to 91%. Furthermore,

we utilize them as constraints on simulation’ initial conditions for a number of bifurcating

121

shapes. Biased initial conditions may be generated that meet these moment constraints,

and the shape aggregations produced from them result in different shape outcomes. In

general, our work shows that self-organizing shape aggregations may be directed toward

producing specific shapes by simply altering their initial conditions. It demonstrates that

macroscopic features may be derived from a low-level self-organization process and used to

control the overall process.

The contributions of the thesis include the following:

• Self-sorting of heterotypic agents. We developed a self-organizing algorithm that

guarantees agent sorting. Modeling and studying cell sorting is important to devel-

opmental biology and cancer research. It also provides paradigms for biology-based

algorithms of self-organization behavior.

• Morphogenetic primitives. Rather than utilizing traditional shape modeling methods

(e.g. parametric shape modeling, spring-mass deformable models, solid shape model-

ing), we developed an ‘organic’ method for modeling predefined macroscopic shapes

with self-organizing primitives. This approach can be extended for and applied to the

control of robotic swarms, motion specification of animated crowds and generative

model creation.

• Investigation of statistical moments. We studied properties of the positions of all

primitives as a whole. From this we discovered macroscopic, distinguishing features

that may be used to characterize different final swarm configurations. Furthermore,

from these features we are be able to confidently predict the final outcome of the

system at an early stage during the shape formation process.

• Directing self-organizing shape formation with biased initial conditions. The results

Chapter 6: Conclusion

122

of the previous work lead to a control methodology that can be applied to self-

organization of multi-agent shape formation, swarm robotics and sensor networks.

• Overall, this thesis describes a methodology for programming self-organizing primi-

tives that robustly form into user-defined macroscopic shapes.

This thesis describes the first stage of a long-term effort to develop developmental-

biology-inspired algorithms for spatial self-organization. Chemotaxis is the first cellular

behavior we investigated as a self-organization paradigm. At this stage many open questions

remain about the specifics of chemotaxis-based shape composition. Could engineering self-

organizing systems benefit from other cellular behaviors? If so, what are those behaviors?

More specifically, in our shape formation system, what class of shapes can be produced with

the chemotaxis paradigm? Why don’t the field functions always produce the same shape

from initial uniformly random configurations? Are there other ways to control the final

outcome of the shape formation process besides starting the simulations with biased initial

conditions? What is the relationship between the form of a chemical field function and its

associated final aggregated shape? Finding the answers to these questions is the core of

future research.

The results presented here provide the proof of concept that paradigms for general

spatial self-organization algorithms may be found by studying cell biology, specifically the

intercellular mechanisms of morphogenesis. We also demonstrate that macroscopic features

can be used to predict and control the outcome of spatial self-organization.

Chapter 6: Conclusion

123

Bibliography

[1] H. Abelson, R. Weiss, D. Allen, D. Coore, C. Hanson, G. Homsy, T.F. Knight Jr,

R. Nagpal, E. Rauch, and G.J. Sussman. Amorphous computing. Communications

of the ACM, 43(5):74–82, 2000.

[2] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, and

P. Walter. Essential Cell Biology. Garland Publishing, 2nd edition, 2003.

[3] L. Bai and D. Breen. Calculating Center of Mass in an Unbounded 2D Environment.

Journal of Graphics Tools, 13(4):53–60, 2008.

[4] L. Bai and D.E. Breen. Directing spatial self-organization via biased, random initial

conditions. In Proc. IEEE Swarm Intelligence Symposium, under review.

[5] L. Bai, M. Eyiyurekli, and D.E. Breen. Automated shape composition based on cell

biology and distributed genetic programming. In Proc. Genetic and Evolutionary

Computation Conference, pages 1179–1186, 2008.

[6] L. Bai, M. Eyiyurekli, and D.E. Breen. An emergent system for self-aligning and self-

organizing shape primitives. In Proc. 2nd International Conference on Self-Adaptive

and Self-Organizing Systems, pages 445–454, 2008.

[7] L. Bai, M. Eyiyurekli, and D.E. Breen. Self-organizing primitives for automated

shape composition. In Proc. IEEE International Conference on Shape Modeling &

Applications, pages 147–154, 2008.

124

[8] L. Bai, M. Eyiyurekli, P.I. Lelkes, and D.E. Breen. Self-organized sorting of het-

erotypic agents via a chemotaxis paradigm. Science of Computer Programming,

78(5):594–611, 2013.

[9] L. Bai, R. Gilmore, and D.E. Breen. Predicting spatial self-organization with sta-

tistical moments. In Proc. Spatial Computing Workshop of the AAMAS Conference,

Article 2, 2014.

[10] Linge Bai and David E Breen. Chemotaxis-inspired cellular primitives for self-

organizing shape formation. In R. Doursat, H. Sayama, and O. Michel, editors,

Morphogenetic Engineering, pages 209–237. Springer, Berlin, 2012.

[11] T. Balch and R.C. Arkin. Behavior-based formation control for multirobot teams.

IEEE Transactions on Robotics and Automation, 14(6):926–939, 1998.

[12] J. Beal. Functional blueprints: An approach to modularity in grown systems. Swarm

Intelligence, 5(3-4):257–281, 2011.

[13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. Organiz-

ing the aggregate: Languages for spatial computing. arXiv preprint arXiv:1202.5509,

2012.

[14] J.M. Belmonte, G.L. Thomas, L.G. Brunnet, R.M.C. de Almeida, and H. Chate.

Self-propelled particle model for cell-sorting phenomena. Physics Review Letters,

100:248702, 2008.

[15] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, 1999.

Bibliography

125

[16] E. Bonabeau, S. Guerin, D. Snyers, P. Kuntz, and G. Theraulaz. Three-dimensional

architectures grown by simple stigmergic agents. Biosystems, 56(1):13–32, 2000.

[17] D. Bray. Cell Movements. Garland Publishing, New York, 2000.

[18] C. Brown. UNIX Distributed Programming. Prentice Hall, New York, 1994.

[19] Samuel R Buss and Jay P Fillmore. Spherical averages and applications to spherical

splines and interpolation. ACM Transactions on Graphics (TOG), 20(2):95–126, 2001.

[20] S. Camazine. Self-Organization in Biological Systems. Princeton University Press,

2001.

[21] Luca Cardelli. On process rate semantics. Theoretical Computer Science, 391(3):190–

215, 2008.

[22] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-

chines. ACM Trans. on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[23] J. Crank. The Mathematics of Diffusion. Oxford University Press, Oxford, 2nd

edition, 1975.

[24] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines

and Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

[25] A. Czirók, H.E. Stanley, and T. Vicsek. Spontaneously ordered motion of self-

propelled particles. Journal of Physics A: Mathematical and General, 30(5):1375–

1385, 1997.

Bibliography

http://www.csie.ntu.edu.tw/~cjlin/libsvm

126

[26] J.P. Desai, J.P. Ostrowski, and V. Kumar. Modeling and control of formations of non-

holonomic mobile robots. IEEE Transactions on Robotics and Automation, 17(6):905–

908, 2001.

[27] R. Doursat. The growing canvas of biological development: Multiscale pattern gen-

eration on an expanding lattice of gene regulatory networks. InterJournal: Complex

Systems, 1809, 2006.

[28] R. Doursat. Organically grown architectures: Creating decentralized, autonomous

systems by embryomorphic engineering. In R.P. Würtz, editor, Organic Computing,

chapter 8, pages 167–200. Springer Verlag, 2008.

[29] R. Doursat. Organically grown architectures: Creating decentralized, autonomous

systems by embryomorphic engineering. Organic Computing, pages 167–199, 2008.

[30] R. Doursat. Programmable architectures that are complex and self-organized: From

morphogenesis to engineering. Artificial Life, 11:181–188, 2008.

[31] R. Doursat. The self-made puzzle: Integrating self-assembly and pattern formation

under non-random genetic regulation. InterJournal: Complex Systems, 2292, 2008.

[32] D.G. Drubin, editor. Cell Polarity. Oxford University Press, 2000.

[33] P. Eggenberger. Evolving morphologies of simulated 3D organisms based on differ-

ential gene expression. In Proc. 4th European Conference on Artificial Life, pages

205–213, 1997.

[34] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

[35] Aguston E Eiben and Marc Schoenauer. Evolutionary computing. Information Pro-

cessing Letters, 82(1):1–6, 2002.

Bibliography

127

[36] E. Eisenbach et al. Chemotaxis. Imperial College Press, London, 2004.

[37] M. Eyiyurekli, L. Bai, P. Lelkes, and D. Breen. Chemotaxis-based sorting of self-

organizing heterotypic agents. In Proc. ACM Symposium on Applied Computing,

pages 1315–1322, 2010.

[38] M. Eyiyurekli, P. Lelkes, and D. Breen. A computational system for investigating

chemotaxis-based cell aggregation. In Proc. European Conference on Artificial Life,

pages 1034–1049, 2007.

[39] M. Eyiyurekli, P. Lelkes, and D. Breen. Simulation of chemotaxis-based sorting of

heterotypic cell populations. In Proc. IEEE / NIH BISTI Life Science Systems &

Applications Workshop, pages 47–50, 2007.

[40] M. Eyiyurekli, P. Manley, P. Lelkes, and D. Breen. A computational model of

chemotaxis-based cell aggregation. BioSystems, 93(3):226–239, 2008.

[41] B.E. Farrell, R.P. Daniele, and D.A. Lauffenburger. Quantitative relationships be-

tween single-cell and cell-population model parameters for chemosensory migration

responses of alveolar macrophages to C5a. Cell Motility and the Cytoskeleton, 16:279–

293, 1990.

[42] Giancarlo Ferrari-Trecate, Annalisa Buffa, and Mehdi Gati. Analysis of coordina-

tion in multi-agent systems through partial difference equations. IEEE Trans. on

Automatic Control, 51(6):1058–1063, 2006.

[43] K.W. Fleischer. A Multiple-Mechanism Developmental Model for Defining Self-

Organizing Geometric Structures. PhD thesis, California Institute of Technology,

1995.

Bibliography

128

[44] K.W. Fleischer. Investigations with a multicellular developmental model. In Proc.

Artificial Life V, pages 389–408, 1996.

[45] K.W. Fleischer and A.H. Barr. A simulation testbed for the study of multicellular

development: The multiple mechanisms of morphogenesis. Artificial Life III, pages

389–408, 1994.

[46] K.W. Fleischer, D.H. Laidlaw, B.L. Currin, and A.H. Barr. Cellular texture genera-

tion. In Proc. SIGGRAPH, pages 239–248, 1995.

[47] R.A. Foty, C.M. Pfleger, G. Forgacs, and M.S. Steinberg. Surface tensions of embry-

onic tissues predict their mutual envelopment behavior. Development, 122:1611–1620,

1996.

[48] C. Gagné and M. Parizeau. Genericity in evolutionary computation software tools:

Principles and case-study. International Journal on Artificial Intelligence Tools,

15(2):173–194, 2006.

[49] S.F. Gilbert. Developmental Biology. Sinauer Associates, Inc., Sunderland, MA, 8th

edition, 2006.

[50] J.A. Glazier, R. Raphael, F. Graner, and Y. Sawadac. The energetics of cell sorting in

three dimensions. In Interplay of Genetic and Physical Processes in the Development

of Biological Form, pages 54–61. World Scientific Publishing Company, Singapore,

1995.

[51] F. Graner and J. A. Glazier. Simulation of biological cell sorting using a two-

dimensional extended potts model. Physical Review Letters, 69:2013–2016, 1992.

Bibliography

129

[52] H. Haken. Synergetics. An introduction. Nonequilibrium phase transitions and selfor-

ganization in physics, chemistry, and biology. Berlin and New York: Springer-Verlag,

1983.

[53] Heiko Hamann. A reductionist approach to hypothesis-catching for the analysis of

self-organizing decision-making systems. In Proc. IEEE Conference on Self-Adaptive

and Self-Organizing Systems, pages 227–236, 2013.

[54] P. Hogeweg. Evolving mechanisms of morphogenesis: on the interplay between differ-

ential adhesion and cell differentiation. Journal of Theoretical Biology, 203:317–333,

2000.

[55] P. Hogeweg. Computing an organism: on the interface between informatic and dy-

namic processes. Biosystems, 64:97–109, 2002.

[56] P.E. Hotz. Combining developmental processes and their physics in an artificial evo-

lutionary system to evolve shapes. In Kumar S. and P.J. Bentley, editors, On Growth,

Form and Computers, pages 302–318. Academic Press, 2003.

[57] M.A. Hsieh and V. Kumar. Pattern generation with multiple robots. In Proc. Inter-

national Conference on Robotics and Automation (ICRA), pages 2442–2447, 2006.

[58] E. Jabbarzadeh and C.F. Abrams. Chemotaxis and random motility in unsteady

chemoattractant fields: A computational study. Journal of Theoretical Biology,

235:221–232, 2005.

[59] E.F. Keller and L.A. Segel. Model for chemotaxis. Journal of Theoretical Biology,

30(2):225–234, 1971.

Bibliography

130

[60] Ioannis G Kevrekidis, C William Gear, and Gerhard Hummer. Equation-free: The

computer-aided analysis of complex multiscale systems. AIChE Journal, 50(7):1346–

1355, 2004.

[61] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.

Science, 220:863–868, 1983.

[62] J.R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

[63] K Kruse and F Jülicher. Morphogenetic processes in animals and plants. The European

Physical Journal E: Soft Matter and Biological Physics, 33(2):97–97, 2010.

[64] M. Kumar, D.P. Garg, and V. Kumar. Self-sorting in a swarm of heterogeneous

agents. In Proc. American Control Conference, pages 117–122, 2008.

[65] Kristina Lerman, Alcherio Martinoli, and Aram Galstyan. A review of probabilistic

macroscopic models for swarm robotic systems. In Swarm Robotics, pages 143–152.

Springer, 2005.

[66] Xia Lin, Dagobert Soergel, and Gary Marchionini. A self-organizing semantic map

for information retrieval. In Proc. International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 262–269, 1991.

[67] Wenguo Liu, Alan Winfield, Jin Sa, Jie Chen, and Lihua Dou. Strategies for energy

optimisation in a swarm of foraging robots. In Swarm Robotics, pages 14–26. Springer,

2007.

[68] M. Mamei, M. Vasirani, and F. Zambonelli. Experiments of morphogenesis in swarms

of simple mobile robots. Applied Artificial Intelligence, 18(9-10):903–919, 2004.

Bibliography

131

[69] N. Metropolis, A.W. Rosenbluth, M. Rosenbluth, A.H. Teller, and E. Teller. Equa-

tion of state calculations by fast computing machines. Journal of Chemical Physics,

21:1087–1092, 1953.

[70] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equa-

tions of state calculations by fast computing machines. Journal of Chemical Physics,

21(6):1087–1092, 1953.

[71] J.C.M. Mombach, J.A. Glazier, R.C. Raphael, and M. Zajac. Quantitative comparison

between differential adhesion models and cell sorting in the presence and absence of

fluctuations. Phys. Rev. Lett., 75:2244–2247, 1995.

[72] R. Nagpal. Programmable self-assembly using biologically-inspired multiagent control.

In Proc. 1st International Joint Conference on Autonomous Agents and Multiagent

Systems: Part 1, pages 418–425, 2002.

[73] R. Nagpal, A. Kondacs, and C. Chang. Programming methodology for biologically-

inspired self-assembling systems. In Proc. AAAI Spring Symposium on Computational

Synthesis: From Basic Building Blocks to High Level Functionality, pages 173–180,

2003.

[74] Radford M Neal. Slice sampling. Annals of Statistics, pages 705–741, 2003.

[75] Andrew C Oates, Luis G Morelli, and Saúl Ares. Patterning embryos with oscillations:

structure, function and dynamics of the vertebrate segmentation clock. Development,

139(4):625–639, 2012.

[76] M. Peifer. Developmental Biology: Birds of a feather flock together. Nature, 395:324–

325, 1998.

Bibliography

132

[77] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. Self-organization, embodiment, and

biologically inspired robotics. Science, 318(5853):1088–1093, 2007.

[78] C.W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM

SIGGRAPH Computer Graphics, volume 21, pages 25–34. ACM, 1987.

[79] Erol Şahin. Swarm robotics: From sources of inspiration to domains of application.

In Swarm robotics, pages 10–20. Springer, 2005.

[80] J.M. Savinell, G.M. Lee, B.O. Palsson, and Ann Arbor. On the orders of magnitude

of epigenic dynamics and monoclonal antibody production. Bioprocess Engineering,

4:231–234, 1989.

[81] H. Sayama. Swarm chemistry. Artificial Life, 15(1):105–114, 2009.

[82] H. Sayama. Robust morphogenesis of robotic swarms [application notes]. Computa-

tional Intelligence Magazine, IEEE, 5(3):43–49, 2010.

[83] Thomas Schmickl, Christoph Möslinger, and Karl Crailsheim. Collective perception

in a robot swarm. In Swarm Robotics, pages 144–157. Springer, 2007.

[84] J.J. Schneider and S. Kirkpatrick. Stochastic Optimization. Springer Verlag, 2006.

[85] Skipper Seabold and Josef Perktold. Statsmodels: econometric and statistical mod-

eling with python. In Proc. 9th Python in Science Conference, pages 57–61, 2010.

[86] G. Serini et al. Modeling the early stages of vascular network assembly. The EMBO

Journal, 22(8):1771–1779, 2003.

[87] G. Serugendo, A. Karageorgos, O.F. Rana, and F. Zambonelli, editors. Engineering

Self-Organising Systems. Springer, Berlin, 2004.

Bibliography

133

[88] W.M. Shen, P. Will, A. Galstyan, and C.M. Chuong. Hormone-inspired self-

organization and distributed control of robotic swarms. Autonomous Robots, 17(1):93–

105, 2004.

[89] Geoffroy Simon, Amaury Lendasse, Marie Cottrell, J-C Fort, and Michel Verleysen.

Time series forecasting: Obtaining long term trends with self-organizing maps. Pat-

tern Recognition Letters, 26(12):1795–1808, 2005.

[90] K. Sims. Artificial evolution for computer graphics. In Proc. SIGGRAPH, pages

319–328, 1991.

[91] K. Sims. Interactive evolution of equations for procedural models. The Visual Com-

puter, 9(8):466–476, 1993.

[92] K. Sims. Evolving virtual creatures. In Proc. SIGGRAPH, pages 15–22, 1994.

[93] M.S. Steinberg. Adhesion in development: an historical overview. Developmental

Biology, 180:377–388, 1996.

[94] M.S. Steinberg and M. Takeichi. Experimental specification of cell sorting, tissue

spreading, and specific spatial patterning by quantitative differences in cadherin ex-

pression. Proceedings of the National Academy of Science USA, 91(1):206–209, 1994.

[95] K. Stoy and R. Nagpal. Self-reconfiguration using directed growth. In Proc. 7th Int.

Symp. on Distributed Autonomous Robotic Systems, pages 1–10, 2004.

[96] K. Stoy and R. Nagpal. Self-repair through scale independent self-reconfiguration.

In Proc. IEEE/RSJ International Conference on Robots and Systems, (IROS, pages

2062–2067, 2004.

Bibliography

134

[97] Jan Sudeikat and Wolfgang Renz. A systemic approach to the validation of self–

organizing dynamics within MAS. In Agent-Oriented Software Engineering IX, pages

31–45. Springer, 2009.

[98] H. Tanner, A. Jadbabaie, and G.J. Pappas. Flocking in fixed and switching networks.

IEEE Transactions on Automatic Control, 52(5):863–868, May 2007.

[99] G. Theraulaz and E. Bonabeau. Coordination in distributed building. Nature,

269:686–688, 1995.

[100] G. Theraulaz and E. Bonabeau. Modeling the collective building of complex architec-

tures in social insects with lattice swarms. Journal of Theoretical Biology, 177:381–400,

1995.

[101] G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial Life, 5:97–116,

1999.

[102] T. Vicsek, A. Czirók, E. Ben-Jacob, and I. Cohen. Novel type of phase transition in

a system of self-driven particles. Physics Review Letters, 75:1226–1229, 1995.

[103] A. Voss-Böhme and A. Deutsch. The cellular basis of cell sorting kinetics. Journal of

Theoretical Biology, 263:419–436, 2010.

[104] G. Weiss, editor. Multiagent Systems, 2nd Edition. MIT Press, Cambridge, MA,

2013.

[105] J. Werfel. Biologically realistic primitives for engineered morphogenesis. In Proc. 7th

International Conference on Swarm Intelligence, pages 131–142, 2010.

Bibliography

135

[106] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal. Distributed construction by mobile

robots with enhanced building blocks. In Proc. IEEE International Conference on

Robotics and Automation, pages 2787–2794, 2006.

[107] J. Werfel, D. Ingber, and R. Nagpal. Collective construction of environmentally-

adaptive structures. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ

International Conference on, pages 2345–2352, 2007.

[108] J. Werfel and R. Nagpal. Extended stigmergy in collective construction. IEEE Intel-

ligent Systems, 21(2):20–28, 2006.

[109] S. Wiggins, editor. Introduction to Applied Nonlinear Dynamical Systems and Chaos,

2nd Edition. Springer, New York, 2003.

[110] S. Wolfram. Cellular automata. Los Alamos Science, 9(2–21):42, 1983.

[111] Wai-Tak Wong, Frank Y Shih, and Jung Liu. Shape-based image retrieval using

support vector machines, fourier descriptors and self-organizing maps. Information

Sciences, 177(8):1878–1891, 2007.

[112] Jeffrey M Wooldridge. Applications of generalized method of moments estimation.

The Journal of Economic Perspectives, 15(4):87–100, 2001.

Bibliography

136

Appendix A: Calculating Center of Mass in an Unbounded 2D
Environment

Abstract. We study the behavior of simple, 2-D, self-organizing primitives that interact

and move in an unbounded environment to create aggregated shapes. Each primitive is

represented by a disk and a unit point mass. In order to compare the aggregated shape

produced by the primitives to other shapes, the centers of mass of the two shapes must be

aligned. We present an algorithm for calculating the center of mass (COM) for a set of point

masses that are distributed in an unbounded 2D environment. The algorithm calculates

the centroid for each coordinate component separately by forming two “orthogonal” tubes,

calculating a center-of-mass in 3-D for each tube and then projecting the 3-D COM back

onto the tubes, in order to produce the 2-D COM of the points.

A.1 Introduction

We are studying automated shape composition based on self-organizing primitives. We have

developed a method for discovering local interaction that direct the primitives to aggregate

into a user-defined shape [7]. The primitives are randomly placed in an unbounded 2D

environment and allowed to assemble by following local field gradients. The primitives’

environment has toroidal topology, since the top edge of the computational arena is con-

nected to the bottom edge, and the left edge is connected to the right edge. This allows the

primitives to move and interact with other primitives across arena boundaries. This type

of computational configuration is also described as having periodic boundary conditions. A

central component of our self-organization method is a genetic programming process [62]

that requires that we quantify the similarity of the aggregated shape with the user-specified

shape [5]. In order to compute the similarity metric, the shapes must first be placed in over-

137

lapping areas of the computational environment. Therefore, we make the center of mass

(COM) of the aggregate coincident with the COM of the user-defined shape in the center

of the shape’s 2-D Cartesian (image) space. In this paper, we present an algorithm for

calculating the COM for a set of point masses in an unbounded 2D (toroidal) environment.

Figure A.1: (left) Original image and (right) incorrect centered result - example 1.

Figure A.2: (left) Original image and (right) incorrect centered result - example 2.

In general the center of mass COM of a set of point masses is calculated by the weighted

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.1

138

average of all the points as in the equation

COM =

∑
miXi∑
mi

, (A.1)

where mi is the mass of point i and Xi is its location. Since our point masses exist in

an unbounded environment, the problem is complicated by the lack of a proper origin for

the environment’s coordinate system. The specific problem we are solving involves finding

the center of mass for n unit point masses in a rectangle with toroidal topology, where

the origin of the finite rectangle is in the lower left corner. The COM is needed in the

coordinate system of the rectangle. Equation A.1 cannot be used to provide a solution,

since the collection of points may be aggregated across the environment’s boundaries. For

example in Figure A.1 (left), the points on the left-top edge are close to points near the

top-right corner and bottom-right edge, because of the toroidal connectivity. Similarly, in

Figure A.2 (left) the points along the top edge of the image are close to the points along

the bottom edge of the image. Simply applying Equation A.1, using the 2-D Cartesian

coordinates of the images, produces incorrect solutions, as seen in Figures A.1 (right) and

A.2 (right). In these images a red dot is placed at the center of mass produced by the above

method. The COM calculated by our new method is represented by a green dot, which can

be found in the upper left portion of the images. When we compare aggregation results,

the computed COM (red dot) is translated to the center of the image, with the pixels being

rolled across edge boundaries. The desired result should place the aggregate in the center

of the image. Using the 2-D Cartesian coordinates of the points along with Equation A.1

does not produce the desired outcome.

One existing solution, based on SLERP, computes a weighted spherical average [19].

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.1

139

The weighted average is expressed similarly to Equation A.1, but on the surface of a torus.

The COM of the point masses is the point that minimizes the sum of weighted distance

between COM and each point mass. However, the calculation of distance on a toroidal

surface is complex and the outcome of the minimization may have multiple local solutions.

Therefore, we propose a new, simpler algorithm to solve the COM problem in an unbounded

2D (toroidal) environment.

A.2 Algorithm Description

In order to properly calculate the COM of 2-D point masses distributed in an environment

with periodic boundary conditions, the masses are first mapped onto 3-D tubes. A COM

calculation is performed in three dimensions and then projected back into two dimensions.

The algorithm calculates the centroid for each coordinate component separately by forming

two tubes, and calculating a center-of-mass in 3-D for the points on each tube. The 3-D

COM is then projected back onto the tubes. The location of the projected COM in the

coordinate system of the tube surface is the 2-D COM of the points.

The location of a point mass in the 2-D rectangle is represented by the 2-D Cartesian

coordinate (i, j), with values ranging from (0, 0) to (imax, jmax). The algorithm constructs

two “orthogonal” tubes from the 2-D rectangle. We use the term orthogonal because one

tube is formed by connecting the left edge of the rectangle with the right edge, and the

other tube is formed by connecting the top edge with the bottom, conceptually creating two

tubes rotated 90 ◦ from each other. The first tube (Ti) is created by connecting the i = 0

edge of the rectangle with the i = imax edge. The second tube (Tj) is created by connecting

the j = 0 edge of the rectangle with the j = jmax edge. The process of forming the

tubes transforms the primitives’ locations from 2-D to 3-D. The 3-D Cartesian coordinate

Xk ≡ (x, y, z) denotes the location of the k-th point mass in three dimensions during these

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.1

140

interim calculations. The 2-D to 3-D transformation for points on tube Ti is defined by

x = ri cos(θi), y = j, z = ri sin(θi),

ri =
imax

2π
, θi =

i

imax
2π. (A.2)

The 2-D to 3-D transformation for points on tube Tj is defined by

x = i, y = rj cos(θj), z = rj sin(θj),

rj =
jmax

2π
, θj =

j

jmax
2π. (A.3)

Two different tubes are needed in order to calculate each coordinate of the COM. Tube

Ti is used to calculate the i coordinate, because once transformed to cylindrical coordinates

the i becomes the boundless θi coordinate. Tube Tj is used to calculate the j coordinate,

because j is then mapped to θj .

Once the unit point masses have been mapped onto one of the tubes, the 3-D center of

mass of these transformed points is calculated,

X̄ =
1

n

n∑
k=1

Xk. (A.4)

X̄ is then projected back onto each tube. We calculate just one of the COM coordinate

from each tube. ī is calculated from X̄ for Tube Ti.

θi = atan2(−z̄,−x̄) + π, ī =
imax

2π
θi. (A.5)

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.2

141

j̄ is calculated from X̄ for Tube Tj .

θj = atan2(−z̄,−ȳ) + π, j̄ =
jmax

2π
θj . (A.6)

After this calculation, point (̄i, j̄) is the center of mass of the original 2-D point masses

in the 2-D Cartesian coordinate system of the rectangle. atan2(y, x) is a Unix math func-

tion that computes the principal value of the arc tangent of y/x, using the signs of both

arguments to determine the quadrant of the return value. It returns a value between −π

and π. The inputs to atan2 are negated and the output is incremented by π in order to

map the output of atan2 to the ranges of θ ([0, 2π]), defined in Equations A.2 and A.3.

A degenerate case occurs when the 3-D center of mass lies on the central axis of a

tube. In this case, the projection of the 3-D point onto the surface of the tube is not

well-defined. In Equations A.5 and A.6, the degenerate case occurs for atan2(0, 0). This

(unlikely) situation can be detected and the output θ value can simply be defined as 0. The

3-D point is then projected to one of the edges of the 2-D rectangle. However, after rolling

the 2-D rectangular image, the projected 2-D point will always be at the center of the rolled

image.

A 1-D example of the algorithm is presented in Figure A.3. Point masses are given along

a line representing a connected circular environment (Figure A.3a). The ends of the line

are conceptually connected and marked by a star. In order to calculate the COM of the

masses, the line is formed into a circle. The COM is calculated using the new 2-D positions

and marked by a small red ‘x’ (Figure A.3b). The intermediate 2-D COM is projected

back onto the circle and marked by a red disk (Figure A.3c), providing the 1-D COM in

the coordinates of the line (Figure A.3d). The degenerate case of the 1-D COM calculation

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.2

142

(a)

(b) (c)

(d)

Figure A.3: Applying the COM algorithm in 1D.

occurs when the 2-D COM (red ‘x’ in Figure A.3b) overlaps with the center of the circle.

The 2-D COM can then be projected to either end of the 1-D line.

A.3 Examples

We present four examples from our self-organization simulations that use the COM algo-

rithm to shift aggregates, formed in an unbounded 2D environment, to the center of an

image. We roll the COM (̄i, j̄) to the center of the image (imax/2, jmax/2) as seen in Figure

A.4 through Figure A.7. In all of these examples, the main aggregated object crosses several

boundaries of the image rectangle. In the left images the COM of the point set is displayed

with a red dot. In the right images, the COM (red dot) is shifted to the center of the image

rectangle, with the same shift applied to all of the points. If the shift makes an individual

point cross an image edge, the point is placed on the opposite side of the images, i.e. the

image is rolled.

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.2

143

We have found the COM algorithm to be effective and robust. It has been employed to

calculate the center of mass for approximately 100,000 diverse test cases, and has always

produced satisfactory results in practice.

Figure A.4: (left) Original image and (right) desired centered result - example 1.

Figure A.5: (left) Original image and (right) desired centered result - example 2.

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.3

144

Figure A.6: (left) Original image and (right) desired centered result - example 3.

Figure A.7: (left) Original image and (right) desired centered result - example 4.

Appendix A: Calculating Center of Mass in an Unbounded 2D EnvironmentA.3

145

Vita

Linge Bai received her Bachelor of Engineering in Computer Science and Technology from

Wuhan University in June 2006, and her Master of Science in Computer Science from Drexel

University in September 2008.

Publications

• L. Bai and D.E. Breen, “Directing Spatial Self-Organization via Biased, Random Initial

Conditions.”

• L. Bai, R. Gilmore and D.E. Breen, “Predicting Spatial Self-Organization with Statisti-

cal Moments,” Proceedings of Spatial Computing Workshop of the AAMAS Conference,

Article 2, May 2014.

• L. Bai, M. Eyiyurekli, P.I. Lelkes and D.E. Breen, “Self-Organized Sorting of Heterotypic

Agents Via a Chemotaxis Paradigm,”Science of Computer Programming, Vol. 78, No. 5,

pp. 594 – 611, May 2013.

• L. Bai, T. Widmann, F. Jülicher, C. Dahmann and D.E. Breen, “3D Surface Reconstruc-

tion and Visualization of the Drosophila Wing Imaginal Disc at Cellular Resolution,” Pro-

ceedings of SPIE-IS&T Conference on Electronic Imaging, Volume 8654, Article 86540D,

February 2013.

• L. Bai and D. Breen, “Chemotaxis-Inspired Cellular Primitives for Self-Organizing Shape

Formation,” R. Doursat, H. Sayama, O. Michel (eds.), Morphogenetic Engineering: To-

ward Programmable Complex Systems, Springer, Berlin, Chapter 9, 2012, pp. 209 – 237.

146

• D.E. Breen, T. Widmann, L. Bai, F. Jülicher and C. Dahmann, “Epithelial Cell Recon-

struction and Visualization of the Developing Drosophila Wing Imaginal Disc,” Proceed-

ings of IEEE Symposium on Biological Data Visualization, pp. 77 – 84, Seattle, WA,

October 2012.

• M. Eyiyurekli, L. Bai, P. Lelkes, D. Breen, “Chemotaxis-based Sorting of Self-Organizing

Heterotypic Agents,” Proceedings of the 2010 ACM Symposium on Applied Computing,

pp. 1315 – 1322, Sierre, Switzerland, March 2010.

• L. Bai, D. Breen, “Calculating Center of Mass in an Unbounded 2D Environment,”

Journal of Graphics Tools, Vol. 13, No. 4, 2008, pp. 53 – 60.

• L. Bai, M. Eyiyurekli, D. Breen, “An Emergent System for Self-Aligning and Self-

Organizing Shape Primitives,” Proceedings of 2nd IEEE International Conference on

Self-Adaptive and Self-Organizing Systems (SASO), pp. 445 – 454, Venice, Italy, October

2008.

• L. Bai, “Self-Organizing Primitives for Automated 2D Shape Composition,” M.S. Thesis,

Drexel University, Philadelphia, PA, August 2008.

• L. Bai, M. Eyiyurekli, D. Breen, “Automated Shape Composition Based on Cell Biol-

ogy and Distributed Genetic Programming,” Proceedings of Genetics and Evolutionary

Computation Conference (GECCO), pp. 1179 – 1186, Atlanta, GA, July 2008.

• L. Bai, M. Eyiyurekli, D. Breen, “Self-Organizing Primitives for Automated Shape Com-

position,” Proceedings of IEEE International Conference on Shape Modeling and Appli-

cations (SMI), Stony Brook, NY, pp. 147 – 154, June 2008.

Vita

	Front Matter
	Title Page
	Copyright Page
	Dedications
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Self-Sorting Primitives
	Introduction
	Related Work
	Chemotaxis-Based Agent Sorting Model
	Chemotaxis
	Attachments and Detachments
	Agent Actions

	Results
	Parametric Studies
	Sorting Quality Evaluation
	Agent Parameters
	Environment Parameters

	Conclusion

	General Shape Formation Primitives
	Introduction
	Related Work
	Approach Overview
	Morphogenetic Primitives
	2-D Biological Cell Aggregation Simulation
	MP Design Principles
	Movement
	Rotation
	Randomness in the System

	A Genetic Programming Framework
	Genetic Programming
	Chemical Field Evolution via Genetic Programming
	Fitness Function
	GP Parameters
	Distributed Master-Slave Model

	Results
	MPs with Fixed Orientation
	Rotating, Self-Aligning MPs
	Chemical Field Visualization

	Discussion
	Generating Results
	Robustness
	Dynamic Stability
	Running Time

	Conclusion

	Predicting Spatial Self-Organization
	Introduction
	Related Work
	System Modifications
	Moment Analysis
	Moment Calculation
	Using Support Vector Machines

	Results
	Conclusion

	Directing Spatial Self-Organization
	Introduction
	Related Work
	Biased Initial Conditions
	Statistical Moments
	Generating Constrained Biased Distributions

	Results
	Quarter-moon Shape
	Ellipse Shape
	Discs Shape
	Parallel Line Shape

	Conclusion

	Conclusion
	Bibliography
	Calculating Center of Mass in an Unbounded 2D Environment
	Introduction
	Algorithm Description
	Examples

	Vita

	Back Matter

