40 research outputs found

    A Survey on UAV-enabled Edge Computing: Resource Management Perspective

    Full text link
    Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.Comment: 36 pages, Accepted to ACM CSU

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    Cloud-Edge Orchestration for the Internet-of-Things: Architecture and AI-Powered Data Processing

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThe Internet-of-Things (IoT) has been deeply penetrated into a wide range of important and critical sectors, including smart city, water, transportation, manufacturing and smart factory. Massive data are being acquired from a fast growing number of IoT devices. Efficient data processing is a necessity to meet diversified and stringent requirements of many emerging IoT applications. Due to the constrained computation and storage resources, IoT devices have resorted to the powerful cloud computing to process their data. However, centralised and remote cloud computing may introduce unacceptable communication delay since its physical location is far away from IoT devices. Edge cloud has been introduced to overcome this issue by moving the cloud in closer proximity to IoT devices. The orchestration and cooperation between the cloud and the edge provides a crucial computing architecture for IoT applications. Artificial intelligence (AI) is a powerful tool to enable the intelligent orchestration in this architecture. This paper first introduces such a kind of computing architecture from the perspective of IoT applications. It then investigates the state-of-the-art proposals on AI-powered cloud-edge orchestration for the IoT. Finally, a list of potential research challenges and open issues is provided and discussed, which can provide useful resources for carrying out future research in this area.Engineering and Physical Sciences Research Council (EPSRC
    corecore